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Abstract

We introduce a collective experimentation problem where a continuum
of agents choose the timing of irreversible actions under uncertainty and
where public feedback from the actions arrives gradually over time. The
leading application is the adoption of new technologies. The socially opti-
mal expansion path entails an informational trade-off where acting today
speeds up learning but postponing capitalizes on the option value of wait-
ing. We contrast the social optimum to the decentralized equilibrium where
agents ignore the social value of information they generate. We show that
the equilibrium can be obtained by assuming that agents ignore the future
actions of other agents, which lets us recast the complicated two-dimensional
problem as a series of one-dimensional problems.
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1 Introduction

Innovation adoption decisions have long-run consequences that can be observed

only gradually over time. In this paper we analyze how such endogenous gradual

learning shapes the socially optimal expansion path and we contrast this to a

situation where adoption decisions are decentralized.

Consider an individual firm contemplating whether to invest in a novel pro-

duction technology or an individual consumer contemplating whether to purchase

a novel durable good. Each new adopter begins to observe how well the tech-

nology functions in different situations and whether technical problems emerge

over time. The experiences of the adopters spill over to potential future adopters

through private communications, social media, or platforms that collect reliability

statistics. An individual who has not yet made an adoption decision utilizes such

information in deciding whether and when to adopt the new technology herself.

Since past adopters continue to produce information over time, the current efficacy

of learning is increasing in the number of past adopters.

This paper introduces a model to analyze how endogenous gradual learning

affects incremental actions with uncertain consequences. The key feature of the

model is that each individual action has a long-run impact on the flow of infor-

mation that is publicly observed.

In the model, a continuum of small agents decide whether and when to take

an irreversible action (e.g. adopt the new innovation). We refer throughout the

paper to the action as a decision to “stop”. An unknown binary state determines if

stopping is profitable for the agents. Crucially, learning is gradual: upon stopping,

each agent initiates a persistent flow of information that other agents observe over

time. This is in contrast to the standard experimentation models where an action

generates an instantaneous one-time signal and further actions are needed to learn

more.1
1In reality individual adoption decisions are often costly to reverse, if not entirely irreversible,

which is enough to add persistence in the social learning. We look at the extreme case of such
persistence - adoption decisions that are infinitely costly to reverse - to understand clearly the
theoretical implications of irreversibility and gradual learning.
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Our main question is how the incremental path of stopping decisions – the

adoption path – is determined on the one hand in a decentralized equilibrium

where agents optimize individually and on the other hand when a central planner

coordinates the actions to maximize the expected welfare summed over the agents.

The contribution of this paper is twofold. First, we develop a novel methodologi-

cal approach with suitable solution techniques. Second, we analyze new economic

phenomena that arise in environments with endogenous gradual learning. We

show that the combination of gradual learning and irreversible decisions creates

a new trade-off for the socially optimal expansions: the information generation

effect calls for aggressive expansion in order to improve information for future

decisions and the option value effect calls for cautious expansion in order to have

better information for the current decisions. A social planner trades off these two

effects dynamically over time, but individual agents internalize only the latter ef-

fect and thus the decentralized equilibrium suffers from informational free-riding.

This informational trade-off would not arise in a model where learning is instan-

taneous rather than gradual because there would then be no scope for improving

information by delaying adoption.2

We approach experimentation under gradual learning by modeling the cumu-

lative path of individual actions as a stock process, which controls the speed of

learning. The micro-foundation for our specification is that each agent who has

stopped produces a persistent stream of i.i.d. signals conditional on the true state.

In continuous time, this leads to an aggregate signal that follows a Brownian mo-

tion with an unknown drift, determined by the true state, and a signal-to-noise

ratio that is increasing in the stock of agents who have stopped. Each stopping

decision thus affects information generation gradually over time.

The techniques to solve the decentralized equilibrium and the socially optimal

policy turn out to be quite different. The common challenge is that the problems

are two-dimensional, as both the current belief about the state and the stock af-

fect the optimal decisions. Furthermore, the stock and the belief processes are

interlinked as the stock determines the flow of new information. We show that the
2Papers studying instantaneous learning include Bonatti (2011), Che and Hörner (2017),

Frick and Ishii (2023), and Laiho and Salmi (2023).
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decentralized equilibrium can be solved by analyzing the optimal stopping deci-

sions of agents who ignore that the other agents stop in the future, i.e. they take

the stock as fixed on the current level. This property turns the two-dimensional

problem into a series of one-dimensional stopping problems. Our proof for the

equivalence between the two stopping problems builds on the fact that informa-

tion arrives smoothly over time under gradual learning.

Unlike the decentralized equilibrium, the socially optimal policy takes into ac-

count the social value of faster learning. Optimization under the assumption that

the stock remains fixed does not work because the value of information depends on

the expected future actions. We cannot solve the optimal policy in closed form,

but we derive a non-linear differential equation that determines the policy and

allows us to characterize it. Because of the information generation effect, socially

optimal policy favors earlier and more aggressive expansions than what happens

in the decentralized equilibrium. The difference between the two is especially pro-

nounced when the learning technology is good and learning could potentially be

fast. Compared to the no-learning benchmark, gradual learning tends to increase

the socially optimal stock for low beliefs and decrease it for high beliefs due to

the informational trade-off between information generation and the option value

of waiting.

Solving the social planner’s problem is an important part of our contribution.

The problem is of independent interest also because it can be interpreted as the

canonical problem of a single decision maker choosing how to expand a capital

stock over time under uncertainty. We discuss this alternative interpretation in

Appendix C.1. The key difference to existing literature in this area (see e.g. Dixit

and Pindyck (1994)) is that in our model the uncertainty is resolved endogenously,

which is the source of disparity between the social optimum and the decentralized

equilibrium.

In the last part of the paper, we show how a central planner can implement

the social optimum, or any other policy, as a decentralized equilibrium by using

anonymous instruments such as posted prices, taxes, or subsidies. We use mecha-

nism design techniques to pin down a dynamic transfer rule that incentivizes each
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individual agent to stop at the desired moment.

1.1 Related literature

Using the framework of our paper, the previous literature on learning can be orga-

nized based on whether the information generation effect or the option value effect

is present in the model. The current paper is the first to analyze the interaction

of these effects.

The information generation effect is present in papers analyzing classic single-

agent bandit problems and experimental consumption (Gittins and Jones 1974,

Rothschild 1974, Prescott 1972 and Grossman, Kihlstrom and Mirman 1977).

Introducing multiple agents to these models adds an informational externality

that dampens the information generation effect. Bolton and Harris (1999), Keller,

Rady and Cripps (2005) and Keller and Rady (2010) analyze such models under

different assumptions on the learning technology. Applications include Bergemann

and Välimäki (1997, 2000) and Bonatti (2011) who analyze dynamic pricing. The

option value effect does not arise in these papers because actions are reversible,

and hence, learning always increases the level of optimal quantities relative to

the no-learning benchmark. Strulovici (2010) shows that also collective decision

making by voting has the effect of reducing experimentation below the socially

optimal level.

When actions are irreversible but information arrives exogenously rather than

endogenously, only the option value effect is present. Seminal papers in this liter-

ature include McDonald and Siegel (1986), Pindyck (1988), and Dixit (1989) and

the ensuing literature on real options is summarized in Dixit and Pindyck (1994).

One can see our solution to the social planner’s problem as extending the real

options literature to endogenous learning.

A few papers investigate social learning with irreversible actions, which bears

similarities with informational free-riding in our decentralized solution. Frick and

Ishii (2023) analyze the adoption of new technologies using a Poisson process with

instantaneous feedback. Free riding on the information generated by others results
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in an inefficiently low rate of innovations in equilibrium. Because feedback from

past actions is instantaneous, endogenous learning does not create an option value

effect for the social planner. Hence, there is no informational trade-off, unlike in

the present paper with gradual learning.

Frick and Ishii (2023) analyze the adoption of new technologies using a Pois-

son process with instantaneous feedback to model learning. Because feedback

from past actions is instantaneous, endogenous learning does not create an option

value effect for the social planner, and hence no informational trade-off on the

social level, unlike in the present paper with gradual learning. In equilibrium,

there is no information generation effect, but free-riding on the information gen-

erated by others creates an option value effect, resulting in an inefficiently low

rate of innovations. An early paper by Rob (1991) makes a similar observation

when analyzing sequential entry into a market of unknown size. Similarly, in the

models of optimal timing under observational learning, the option value creates

an incentive to wait causing socially inefficient delays (Chamley and Gale 1994,

Murto and Välimäki 2011).

Introducing a large player can overturn the effect of social learning and irre-

versibility on optimal quantities because a large player internalizes the information

generation effect. Che and Hörner (2017) study how a social planner, who designs

a recommendation system for consumers, can mitigate informational free-riding.

Laiho and Salmi (2023) analyze monopoly pricing in a similar setup. Both in

Che and Hörner (2017) and in Laiho and Salmi (2023), the presence of a social

planner or a monopolist induces information generation effect. The crucial differ-

ence from the present paper is that the papers model instantaneous learning from

each consumption decision: the planner and the monopolist do not face the option

value effect since they get more information only by attracting new consumers.

More generally, there is no informational trade-off under instantaneous learning,

regardless of whether actions are reversible or irreversible.

Our assumption that learning is gradual implies that past actions matter for

the current information flow. Two contemporaneous papers share this feature

with us, although their models and key trade-offs are otherwise different from
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ours. Liski and Salanié (2020) analyze a single-agent problem where a decision-

maker controls the accumulation of a stock that triggers a one-time catastrophe

at an unknown threshold level. The novel feature in their model is a random

delay between the crossing of the threshold and the onset of the catastrophe.

Martimort and Guillouet (2020) analyze a model with similar features focusing on

a time-inconsistency problem under their assumptions.

Finally, the present paper is related to the literature on innovation adoption.

Traditionally, the theoretical literature has focused on explaining adoption pat-

terns through non-informational (Mansfield (1961), Farrell and Saloner (1986),

and Jovanovic and Lach (1989)) or purely exogenous channels (Jensen (1982)).

The few exceptions are Frick and Ishii (2023) (discussed above), Young (2009),

and Wolitzky (2018). In Young (2009) and Wolitzky (2018), adopters are myopic,

and hence, the option value effect does not arise. There is vast empirical evidence

for social learning in innovation adoption, including Foster and Rosenzweig (1995),

Duflo and Saez (2003), Munshi (2004), Bandiera and Rasul (2006), and Conley

and Udry (2010).3 The present paper contributes to this literature by propos-

ing a tractable model that matches the key characteristic in the studied real-life

settings: gradual learning from others’ outcomes.

2 Model

2.1 Actions and payoffs

A unit mass of small agents choose when, if ever, to take an irreversible action

(to stop). We index individual agents by their type θ and assume that θ is dis-

tributed according to a continuously differentiable distribution function F with a

full support on Θ := [θ, θ]. Time t is continuous and goes to infinity.

An agent’s stopping payoff, vω(θ), depends on the state of the world ω ∈ {H,L}

such that the payoff is higher in the high state of the world for all types: vH(θ) ≥
3The findings in Foster and Rosenzweig (1995), Munshi (2004), and Bandiera and Rasul

(2006) support the importance of the option value effect and informational free-riding: individ-
uals with good prospects to learn from others are less likely to be early adopters.
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0 > vL(θ).4 Payoffs are continuously differentiable with bounded derivatives and

increasing in type: for each θ ∈ Θ, v′ω(θ) ≥ 0 for both ω ∈ {H,L} and v′ω(θ) > 0

for at least one ω = H or ω = L.5 The realized payoff for an agent of type θ, who

stops at time t, is e−rtvω(θ) where r is the common discount rate. The payoff of

not stopping (i.e., stopping at t = ∞) is zero. We normalize vH(θ) = 0 so that

type θ is indifferent between stopping and never stopping if he is sure that ω = H;

types lower than θ would be redundant since they would never want to stop.

Agents are risk-neutral and maximize their expected discounted stopping pay-

offs. The agents do not know the state of the world ω but learn about it over time

as we will describe next.

2.2 Learning

The key idea of gradual learning is that every agent who has stopped generates a

flow of conditionally independent public signals. Therefore, we consider endoge-

nous learning from the stock of stopped agents: let qt denote the stock (measure)

of agents who have stopped by time t.

Specifically, the public learns about the state by observing a Brownian diffu-

sion:6

dyt = qtµωdt+ σ
√
qtdwt, (1)

where we normalize µH = 1/2 and µL = −1/2, σ > 0 is the standard deviation

of the process, and wt is a standard Wiener process. Signal process (1) is the

limit of a model where qt is composed of discrete units that produce conditionally

independent noisy signals over time and where the total informativeness per unit

of q is normalized to stay constant. The signals can be for example interpreted as
4The analysis easily extends to the case where vL(θ) > 0 for some types. The only change is

that all types, who get a positive stopping payoff in both states of the world, stop immediately.
5This assumption ensures that the stopping payoff is strictly increasing in type for any interior

belief about the state.
6The process is otherwise equivalent to the learning processes in Bolton and Harris (1999)

and in Moscarini and Smith (2001) but learning is from the stock of cumulative actions instead
of being from the flow of new actions. Note that this formulation gives rise to a bounded rate
of learning even when all the agents have stopped, i.e. when qt = 1.
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realized individual payoffs (see Appendix A).7

We denote by xt the public posterior belief xt = Pr(ω = H|Ft), where Ft is

the natural filtration generated by the signal process (1). The unconditional law

of motion for the public belief follows from Bayes’ rule:

dxt =
√
qt
σ
xt(1− xt)dw̃t, (2)

where w̃t is a standard Wiener process. In equation (2), the term
√
qt
σ

is the signal-

to-noise ratio of the process (1) and determines how fast the belief converges to

the truth. Hence, the higher the stock of stopped agents, the more informative

the public signals.

2.3 Solution concepts

We use the term policy for a description of how the stock qt evolves over time. A

policy Q = {qt}t≥0 is an increasing stochastic process adapted to Ft. Notice that

the signal process itself depends on the evolution of qt, so that in effect we are

defining policy Q jointly with signal process Y .

Individual agents take the policy Q as given when they choose their stopping

strategies. A strategy for an agent of type θ is a stopping time τ(θ) adapted to

Ft. Type θ solves:

sup
τ(θ)

E
[
e−rτ(θ)vω(θ)

∣∣∣Q] , (3)

where the vertical line notation means that the expectation is for some fixed

process Q.

We say that a stopping profile T = {τ(θ)}θ∈Θ is consistent with Q if

Pr

[∫ θ

θ
1(τ(θ) ≤ t)dF (θ) = qt

∣∣∣Q] = 1

for all t. In other words, T is consistent with Q if the measure of agents that it

commands to stop always matches the policy.
7See Bergemann and Välimäki (1997, 2000), Bolton and Harris (1999), Moscarini and Smith

(2001), and Bonatti (2011) for other applications and further discussion. The difference to these
papers is that they do not consider learning from the stock but from the flow of new actions.
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It is convenient to define solution concepts directly in terms of a policy rather

than in terms of a stopping profile. We consider two solution concepts. In a

decentralized equilibrium agents optimize individually taking the policy as given:

Definition 1. A policy QE is a decentralized equilibrium if there exists a profile

T E such that i) it is consistent with QE and ii) τE(θ) solves (3) for each θ when

Q = QE.

The socially optimal policy maximizes the expected total welfare:

Definition 2. A policy Q∗ is socially optimal if there exists a profile T ∗ such that

i) it is consistent with Q∗ and ii)

E
[∫ θ

θ
e−rτ

∗(θ)vω(θ)dF (θ)
∣∣∣Q∗] ≥ E

[∫ θ

θ
e−rτ(θ)vω(θ)dF (θ)

∣∣∣Q] ,
for any policy Q and profile T = {τ(θ)}θ∈Θ consistent with Q.

In section 3.5 we recast this as a control problem for the stock process {qt}.

This control problem is of independent interest for various applications as a single-

agent experimentation model, as we discuss in appendix C.1.

3 Analysis

Our objective is to analyze how gradual learning affects stopping decisions. First,

we discuss some common properties that hold regardless of whether stopping times

are individually or socially optimal and present the no-learning benchmark. Then,

we solve both the (unique) decentralized equilibrium and the socially optimal

policy. Lastly, we compare the decentralized equilibrium and the socially optimal

solution to the no-learning benchmark and provide comparative statics results on

the effects of learning.

3.1 Higher types stop first

In principle, one can implement a policy Q by many different stopping profiles.

However, because the stopping payoffs are increasing in θ, in equilibrium higher
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type agents want to stop whenever a lower type agent wants to stop, which leads

to monotone stopping profiles:

Lemma 1. If T = {τ (θ)}θ∈Θ maximizes (3) for each θ for given process Q, then

Pr
[
τ (θ) ≤ τ (θ′)

∣∣∣Ft;Q] = 1

whenever θ > θ′.

Also socially optimal stopping order is monotone:

Lemma 2. Any stopping profile T = {τ (θ)}θ∈Θ consistent with Q satisfies:

E
[∫ θ

θ
e−rτ(θ)vω (θ) dF (θ)

∣∣∣Ft;Q
]
≤ E

[∫ θ

θ
e−rτ

mon(θ)vω (θ) dF (θ)
∣∣∣Ft;Q

]
,

where τmon (θ) := inf {t : qt ≥ 1− F (θ)}.

We prove both Lemma 1 and Lemma 2 in Appendix A. The lemmas mean

that it is without loss of generality to restrict attention to stopping profiles where

the agents stop in a descending order by type. It follows that there is a one-to-

one mapping between the stock qt and the largest type θt who has not stopped:

qt = 1− F (θt). Throughout the paper we use notation q(θ) := 1− F (θ) to denote

the stock as a function of the current highest type, which has an inverse (current

highest type): θ(q) := {θ : 1− F (θ) = q}. With a slight notational abuse, we use

vω(q) to denote the stopping payoff of type θ(q).

3.2 Boundary policies

This subsection discusses the dynamics in our model. It turns out that both

solutions can be characterized as boundary policies:

Definition 3. A policy Q is a boundary policy if there exists a continuous function

q̃ : [0, 1] → [0, 1] such that qt = q̃(maxs∈[0,t] xs) where q̃ is strictly increasing for

all x such that q̃(x) > 0.

A boundary policy is Markovian: agents’ stopping decisions depend only on

the stock and the belief. Because stopping is irreversible, the stock at time t is
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determined by the highest belief reached up to t. A boundary policy hence divides

the stock-belief state space into two regions: in the expansion region, more agents

stop until the stock equals q̃(x) and in the waiting region, everyone waits.

q

x

1

1

expansion region

waiting region

x̃

Figure 1: Dynamics in the waiting and expansion regions of the state space.

A boundary policy is fully characterized by the inverse of q̃, an increasing

policy function x̃ : [0, 1] → [0, 1], which maps the stock to the cutoff belief.8 It

turns out that it is easier to use policy functions to characterize our solutions than

functions q̃. Figure 1 illustrates a boundary policy and the implied dynamics in

the state space. Above the boundary, the stock increases (horizontal movement

in the figure) and below it, the stock stays constant and only the belief moves

(vertical movement). As soon as the belief hits the boundary from below, the

quantity is pushed towards right along the boundary. The expansions in the stock

are immediate (depicted by solid arrows in the figure), whereas the belief fluctuates

according to the diffusion process (2) (dashed arrows). Apart from the possible

initial jump, the stock process stays below the boundary and is continuous almost

surely.

It is useful to note that since a boundary policy is Markovian in the stock-

belief state space, we can express an individual agent’s best-response to such a

policy as an optimally chosen stopping region in the state space. We utilize this

in establishing the existence and uniqueness of a decentralized equilibrium.
8We use the term policy to describe a stock process Q that can depend on the news process

in an arbitrary way. The term policy function defined here refers to the characterization of a
particular type of policy – a boundary policy – in the (q, x)-space.
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3.3 No-learning benchmark

We start our analysis with the benchmark case without learning, which allows us

to disentangle how learning affects the decentralized equilibrium and the socially

optimal solution.

When there is no learning but the common belief stays constant, the agents’

stopping problem is myopic. An agent stops if and only if his type is so high that

the expected payoff is positive: xvH(θ) + (1 − x)vL(θ) ≥ 0, or x ≥ −vL(θ)
vH(θ)−vL(θ) .

Hence, the policy function associated with the no-learning benchmark is given by:

xmyop(q) = −vL(q)
vH(q)− vL(q) ,

where vω(q) := vω(θ(q)).

Individually optimal and socially optimal policies coincide when there is no

learning.

3.4 Decentralized equilibrium

We next characterize the decentralized equilibrium defined in Definition 1. An

optimal stopping time for an individual agent trades off the cost of waiting with

the option value of waiting. Because the belief process changes endogenously as

the stock of stopped agents increases, waiting not only brings more information

but also faster learning. Despite this, we show that we can solve equilibrium

stopping times by first solving a sequence of stopping problems where each agent

finds the optimal time to stop when the stock is fixed. That is, we fix qt = q̂

for all t and find the optimal stopping time for type θ(q̂) assuming that qt is

constant and equal to q̂. This one-dimensional stopping problem can be solved

using standard techniques in the literature (see e.g. Dixit and Pindyck (1994) and

the team problem in Bolton and Harris (1999)). We show that an equilibrium in

the original problem is obtained by solving the problem with fixed stock separately

for each individual type and tying these solutions together.9 In effect this pins
9Our method to solve the decentralized equilibrium is inspired by a model of industry level

investments by Leahy (1993) who shows that under exogenous uncertainty the competitive equi-
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uniquely down a necessary condition for the threshold belief at which the ‘next’

agents stops, given the current stock qt, and hence the procedure also establishes

the uniqueness of the equilibrium. Intuitively, uniqueness arises because actions

are strategic substitutes: an agent is less willing to stop if many other agents stop

because then information arrives faster.

We elaborate here further the intuition for the equivalence between the problem

with fixed stock and the original problem. Consider the problem of type θ who is

considering whether or not to stop today. By Lemma 1, later expansions in the

stock will only take place when some lower type θ′ < θ finds it optimal to stop, in

which case it is also optimal for the higher type θ to stop. In other words, future

expansions only take place under circumstances where θ wants to stop in any case,

and therefore those expansions have no bearing on the marginal consideration for

stopping today. Hence, today’s continuation value of the marginal type is the

same in equilibrium as it is in the problem where stock is fixed. As this intuition

suggests, the optimality of ignoring future changes in the stock is an equilibrium

property and may well be violated against other (non-equilibrium) stock processes.

The intuition does not rely on the properties of the learning process in any way,

and therefore we expect the result to generalize to other processes as such. 10 In

Appendix B, we formalize the argument to get the following result:

Proposition 1. There is a unique decentralized equilibrium, which is a boundary

policy characterized by a strictly increasing policy function xE:

xE(q) := −β(q)vL(q)
(β(q)− 1) vH(q)− β(q)vL(q) ,

where β(q) := 1
2

(
1 +

√
1 + 8rσ2

q

)
.

librium behavior coincides with that of ‘myopic’ investors who ignore the effect the future in-
vestments have on the price.

10One critical assumption for the result is that agents are infinitesimally small, which implies
that an individual deviation will not influence the stock process. Suppose, to the contrary,
that there are N players and by stopping a player causes a discrete jump in the stock. With
incomplete information (i.e. if players’ types are private information), the result would not carry
over, which we can deduce from the model analyzed by Décamps and Mariotti (2004). With
complete information, we believe that this property would continue to hold (see e.g. Cetemen,
Urgun and Yariv (2023) for a similar equilibrium property in another context), but contrary to
our setup there might be multiple equilibria.
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According to Proposition 1, an agent of type θ waits until the belief reaches the

cutoff xE(q(θ)), which is precisely the optimal stopping threshold for the agent

of type θ who assumes that the stock remains fixed at q(θ) forever. The term

β(q) reflects the cost of waiting for information. We have β(q) > 1 for all q, but

limq→∞ β(q) = 1. The threshold xE(q(θ)) is decreasing in β(q), which in turn is

increasing in σ and r and decreasing in q.

The decentralized equilibrium is a boundary policy: whenever the belief is

about to cross the boundary xE(q), more agents stop. Notice that xE(q) is in-

creasing in the signal precision (decreasing in σ), which means that a better learn-

ing technology decreases the stock of agents who are willing to stop at any given

belief. This is because the better the learning technology, the greater the option

value of waiting and hence the higher the belief threshold at which an agent stops.

Figure 2 depicts the policy for different values of σ. The no-learning benchmark is

a special case of the decentralized equilibrium as we take σ → ∞, which directly

gives (by using that β(q) > 1):

Corollary 1. The policy function in the decentralized equilibrium is strictly higher

than the no-learning benchmark: xE(q) > xmyop(q) for all σ ≥ 0 and all q ≥ 0.

Notice that the limit σ → 0 corresponds to the case, where the state will be

revealed immediately. In that limit, xE(q) → 1 for all q > 1. The agents who

learn very quickly stop only once they are sure that the state is good.

3.5 Social optimum

We now consider the problem in Definition 2 where a benevolent social planner

seeks to maximize agents’ expected joint payoff. The problem is identical to a

problem of a single decision maker who controls a path of incremental expansions.

We briefly discuss this alternative specification in Appendix C.1.

From Lemma 2, we know that the skimming property holds for the social

optimum and hence the problem is reduced to finding the policy Q that maximizes

the expected social welfare. We use notation U(Q;x, q) to denote the expected

total payoff of agents that have not yet stopped, given current state (x, q) and
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Figure 2: Equilibrium policy xE(q) for different σ when vH(q) = 1 − q, vL(q) = −1/2, and
r = 0.1.

given a policy Q:

U(Q;x, q) = E
[ ∫ 1

q
e−rτ(s)(xτ(s)vH(s) + (1− xτ(s))vL(s))ds

∣∣∣∣x, q;Q]. (4)

The planner’s problem is then equivalent to solving supQ U(Q;x, q) for all (x, q).

By applying Itô’s lemma and using the properties of the Brownian motion, we get

the following Hamilton-Jacobi-Bellman (HJB) equation for the planner’s problem:

rV (x, q) = max
q′≥q

(
r
∫ q′

q
(xvH(s) + (1− x)vL(s))ds+ 1

2Vxx(x, q
′)x

2(1− x)2

σ2 q′
)
.

(5)

We will solve the planner’s problem by showing that the HJB equation is satisfied

by a particular boundary policy that cuts the state space into an expansion region

and a waiting region. A verification argument then shows that the candidate

solution obtained in this way also maximizes the original objective (4).

We derive here heuristically the solution to the HJB equation (the formal proof

and the verification argument are in Appendix C). In principle the optimal policy

could consist of several waiting and expansion regions. We start by guessing that

there is only one expansion and only one waiting region. Let x∗ : [0, 1] → [0, 1]

denote our candidate solution, which splits the state space in two so that for a

given q the planner waits for beliefs x < x∗(q) and expands for beliefs x ≥ x∗(q).

Since the planner internalizes the value of information for further decisions, we
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should intuitively expect the socially optimal expansion region to be larger than

in the case of decentralized equilibrium, i.e. x∗(q) < xE(q). We shall verify that

also this property indeed holds.

We first pin down the functional form for the value function that solves the

HJB equation (5) in the waiting region, i.e. below x∗. There it should be optimal

to choose q′ = q and hence (5) reduces to a differential equation:

rV (x, q) = 1
2Vxx(x, q)

x2(1− x)2

σ2 q.

This has a closed form solution:11

V (x, q) = B(q)Φ(x, q), (6)

where B(q) is a function yet to be determined and

Φ(x, q) :=xβ(q)(1− x)1−β(q) and β(q) = 1
2

(
1 +

√
1 + 8rσ2

q

)
as in Proposition 1.

The value function (6) captures the option value of the future actions for the

planner in state (x, q).

The next step is to find functions B and x∗ that make sure that the right-

side of the HJB equation is maximized everywhere. To do this, we first derive

heuristically two additional conditions that will pin down a candidate for B and

x∗, and prove the optimality of the candidate afterwards. To understand these

conditions, imagine the social planner solving the problem in small successive

steps, where each step consists of choosing the optimal time to add the next incre-

ment dq to the current stock q. The planner’s value function V (x, q) encompasses

the values of options to all future stock increments. At the time of adding dq,

the planner obtains direct payoff increment (x(q)vH(q) − (1 − x(q))vL(q))dq, but

at the same time foregoes the option to add that increment at some later mo-

ment thus inducing a change Vq(x, q)dq in the value function. Requiring these

to be in balance at the moment of hitting the threshold x∗(q) gives a condition

analogous to the value-matching condition in the literature of optimal stopping:
11We have discarded the other root of the characteristic equation, Φ̃(x, q) := x1−β(q)(1−x)β(q),

as we must have that the value converges to the static solution as x→ 0 and x→ 1.
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Vq(x∗(q), q) + x∗(q)vH(q) + (1 − x∗(q))vL(q) = 0. This is an accounting equation

that would have to hold irrespective of whether stock increment is undertaken at

the optimal time instant or not, so we need a second condition to guarantee the

optimality of the timing. Analogous to the smooth-pasting optimality condition

in the literature of optimal stopping, we require that derivatives with respect to x

of the two terms match at the threshold x∗(q): Vqx(x∗(q), q)+vH(q)−vL(q) = 0.12

Using Equation (6), we can write these two conditions as

x∗(q)vH(q) + (1− x∗(q))vL(q) +Bq(q)Φ(x∗(q), q) +B(q)Φq(x∗(q), q) =0, (7)

vH(q)− vL(q) +Bq(q)Φx(x∗(q), q) +B(q)Φqx(x∗(q), q) =0. (8)

Since we have derived conditions (7) - (8) heuristically, we proceed in the spirit

of guess-and-verify: we use them to pin down a candidate policy, but we will not

rely on them when we prove the optimality of the candidate.

We show in Appendix C that the system (7) - (8) can be transformed into a

non-linear differential equation that defines our candidate policy x∗:

x∗′(q) = g(x∗(q), q), (9)

where

g(x, q) =x(1− x)
[
x
(
β′(q)(β(q)− 1)v′H(q)− ((β(q)− 1)β′′(q)− 2(β′(q))2)vH(q)

)
+ (1− x)

(
β′(q)β(q)v′L(q)− (β(q)β′′(q)− 2(β′(q))2)vL(q)

)]
/[(

x(β(q)− 1)2vH(q) + (1− x)(β(q))2vL(q)
)
β′(q)

]
.

The appropriate initial condition for the differential equation is x∗(1) = 1 because

the solution must equal the no-learning benchmark when the belief equals one.

The denominator of function g is zero at (1, 1) and hence a potential singularity

problem arises. However, we show in Appendix C that the initial value problem

has a unique solution that satisfies x∗(q) ≤ xE(q) for all q ∈ [0, 1] (proof of

Lemma 5 in Appendix C.4). This solution is our candidate for social optimum.

We then take the following steps in Appendix C. First, we verify that, together
12See Dixit and Pindyck (1994), chapter 11.1A or Pindyck (1988) for a more formal justification

of analogous conditions in a model with an exogenous stochastic process.
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with the value function in (6), the candidate solves the HJB equation. We then

further verify that it also maximizes the original objective (4). In the process, we

show that x∗(q) is continuous and strictly increasing in q and hence satisfies the

requirements for a boundary policy. We have:

Proposition 2. The socially optimal policy x∗ is a boundary policy that satisfies

x∗(q) ≤ xE(q) for all q ∈ [0, 1]. It solves the initial value problem (9) with initial

value x∗(1) = 1.

Proposition 2 confirms that we can solve the potentially complicated history-

dependent problem with a simple boundary policy. However, unlike the decentral-

ized equilibrium, we cannot solve the planner’s problem in closed form because

the planner is truly forward-looking. For the socially optimal policy, both past

and future actions are relevant. The past generates information that is useful in

evaluating the right decision today, whereas future decisions can be based on in-

formation generated by today’s action. The socially optimal policy balances the

resulting trade-off between the efficient use of information (option value effect)

and the efficient production of information (information generation effect). In

decentralized equilibrium the agents only account for the former effect, so it is the

information generation effect that induces the social planner to adopt faster than

the decentralized equilibrium.
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Figure 3: Socially optimal policy x∗(q) for different σ when vH(q) = 1− q, vL(q) = −1/2, and
r = 0.1.

Figure 3 provides a numerical example of the effects of the signal precision.
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The smaller the noise parameter σ is, the more precise the signals are. Better

learning technology decreases the cutoff belief x∗(q) when the stock is small and

increases it when the stock is high. This arises because improved learning ampli-

fies both information generation and option value effects. The former dominates

in the beginning, when the existing stock is low and there are many uncommitted

agents who benefit from more information. Conversely, the option value effect

dominates later when there are few such agents. Notice that the policies with

learning (finite σ) are first below and later above the myopic policy without learn-

ing (σ =∞). Hence, gradual learning may either increase or decrease expansions

as the informational trade-off suggests. The following proposition generalizes this

observation (see Appendix C.5 for the proof).

Proposition 3. There exists x ∈ (xmyop(0), 1) and x ∈ [x, 1) such that the socially

optimal stock is strictly larger than the no-learning benchmark for all beliefs in

(x∗(0), x) and strictly lower for all beliefs in (x, 1).

Figure 4 illustrates the relationship between the solutions. Compared to the

no-learning benchmark, gradual learning first increases and then decreases optimal

expansions over time. The decentralized policy requires a higher belief for further

expansions than the other policies.
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x

Optimal

Decentralized

Myopic

Figure 4: Different policies when vH(q) = 1− q, vL(q) = −1/2, σ = 0.5, and r = 0.1.

Finally, it is illuminating to look at what happens to the actual speed of learn-

ing when the learning technology improves. To do that, let q∗σ(x) and qEσ (x) denote

the socially optimal and the decentralized stocks for signal precision σ.
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Proposition 4. (a) The socially optimal signal-to-noise ratio explodes as noise

vanishes:
√
q∗σ(x)/σ → ∞ as σ → 0 for all x ∈ (0, 1). (b) The signal-to-noise

ratio in decentralized equilibrium stays bounded as noise vanishes:
√
qEσ (x)/σ →

a(x) as σ → 0 where a(x) = 0 for all x ≤ xstat(0) and a(x) ∈ (0,∞) for all

x ∈ (xstat(0), 1).

Learning gets arbitrarily fast in the socially optimal solution when the learning

technology improves, whereas learning remains slow in the decentralized equilib-

rium. The latter is caused by informational free-riding: no-one wants to be the

first one to stop if information arrives fast. This result suggests that the signal

precision σ is an important determinant of welfare implications of the model. In

Appendix C.6, we prove Proposition 4 and derive the functional form for a(x).

3.6 Adoption path and long-run distribution of the stock

Our model generates an S-shaped adoption path. We do not have a closed form

solution for the expected stock at a given time, but it is straightforward to gen-

erate one by simulation. Figure 5 shows the simulated average stock both in the

decentralized equilibrium and in the social optimum, conditional on ω = H. The

adoption is first slow but then gets faster due to faster learning. Eventually, adop-

tion slows as the marginal agent’s valuation gets lower and the option value effect

increases.

One can compute explicitly the probability distribution of the stock in the

long-run for any boundary policy, including the decentralized equilibrium and

social optimum. Since the long-run stock q∞ := lim
t→∞

qt is equal to the value of the

boundary policy q̃ (·) evaluated at the historical maximum value of the process

xt, we can do this by analyzing the distribution for the maximum value of the

belief process xt. Here we utilize the belief process being a martingale with a

continuous path that eventually converges to truth. Note that if ω = H, then the

stock qt must converge to 1 as the agents learn that stopping is profitable, whereas

if ω = L, the long run stock remains random as some fraction of the agents will

have stopped by mistake.
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Figure 5: Expected adoption paths conditional on ω = H. Parameters: vH(q) = 1 − q,
vL(q) = −1/2, σ = 0.5, r = 0.12, x0 = 0.15, q0 = 0.01.

Proposition 5. Take an arbitrary boundary policy q̃ (x) with inverse x̃ (q) and

assume that the intial stock satisfies q0+ := max (q0, q̃ (x0)) > 0.13 The probability

distribution of the long-run stock is given by:

Pr (q∞ ≤ q |ω = L) =


0 if q < q0+

x̃(q)−x0
x̃(q)(1−x0) if q0+ ≤ q < q̃ (1)

1 if q ≥ q̃ (1)

,

Pr (q∞ ≤ q |ω = H ) =

 0 if q < q̃ (1)

1 if q ≥ q̃ (1)
.

Since the socially optimal policy function is always below the decentralized

equilibrium policy function, i.e. x∗ (q) < xE (q) for all q, the long-run stock tends

to be higher in social optimum than in equilibrium:

Corollary 2. The long-run stock in social optimum dominates the long-run stock

in decentralized equilibrium in the sense of first-order stochastic dominance.
13If q0+ = 0, i.e. x0 ≤ x̃ (0) and q0 = 0, then qt ≡ 0 for all t ≥ 0 and no learning will ever take

place.
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3.7 Mechanism design

We have seen that the social planner’s solution and the decentralized equilibrium

differ from each other. In this section we bridge this gap by showing how to im-

plement a given policy in a decentralized manner with anonymous posted prices.14

A posted price rule P : [0, 1] × [0, 1] → R defines a transfer payment that an

agent has to pay to the designer if willing to stop at a given state. With such a

policy in place, the stopping payoff for an agent of type θ who decides to stop in

state (x, q) is

uθ(x, q) = xvH(θ) + (1− x)vL(θ)− P (x, q). (10)

Let Q be an arbitrary boundary policy with policy function x̃ satisfying x̃(q1) = 1

and its inverse q̃ (x) : [0, 1] −→ [0, q1] with the convention q̃(x) = 0 for x ≤ x̃(0).

Note that we allow here for the possibility that the designer wants to implement a

restricted maximal stock q1 < 1. The following proposition characterizes a posted

price rule that implements Q:

Proposition 6. Fix a boundary policy Q with policy function x̃. Then there exists

a posted price rule P such that Q is a decentralized equilibrium of the game where

the stopping payoff is given by (10). For states along the stopping boundary, the

posted price rule is uniquely pinned down by

P (x̃(q), q) = x̃(q)(vH(θ(q)) + (1− x̃(q))vL(θ(q)))

− E
[ ∫ θ(q)

θ
e−r(τ(s)−τ(θ(q)))

(
x̃(q(s))v′H(s) + (1− x̃(q(s)))v′L(s))

)
ds

∣∣∣∣x̃(q), q
]
. (11)

For states away from the boundary, the posted price rule is not uniquely deter-

mined, but one valid rule is the following:

• For states x > x̃(q), set P (x, q) = P (x, q̃(x)).

• For states x < x̃(q), set P (x, q) = vH(θ).

We prove the proposition in Appendix D. The posted price at the boundary is

pinned down by the envelope theorem of Milgrom and Segal (2002) and we verify
14Depending on the context and sign, these can also be interpreted as taxes or subsidies.
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that incentive compatibility holds globally along the stopping boundary. Below the

boundary, the designer only needs to make sure that the transfer payment is high

enough to make the cost of stopping prohibitive, which is trivially accomplished

by setting the payment at vH(θ). Above the boundary, one must guarantee that

those agents needed for the state to move immediately to the boundary do indeed

want to stop, and P (x, q) = P (x, q̃(x)) is one way to accomplish that.

4 Concluding remarks

Modeling gradual arrival of endogenous information enables the analysis of various

real-life situations where the long-run consequences of a decision determine its

profitability. Because gradual learning creates a novel informational trade-off on

the social level between information generation and the option value of waiting, it

dramatically shapes the incentives of experimentation.

Our model of gradual learning has also technical appeal as a tool for applied

work. As demonstrated in this paper, the decentralized equilibrium can be solved

in closed form and mechanism design techniques can be utilized to conduct policy

analysis. We also believe that the solution method can be extended to richer

environments, such as models where the stock controls a generic state process

or where the actions of other players affect the profitability of stopping directly

through payoff externalities.

An important takeaway from the paper is that the signal precision has subtle

implications for learning and welfare. We show that even if signals get arbitrarily

precise, learning remains slow in the equilibrium. This contrasts with the socially

optimal solution, in which the true state is learned arbitrarily fast as the learning

technology improves. As a result, the equilibrium welfare loss is particularly severe

if the learning technology is good.

As a final point note that irreversibility of actions is a crucial assumption

in our model. The conclusions in models with fully reversible actions such as

Bonatti (2011) are significantly different. A natural extension to our model would

be to analyze what happens if stopping decisions are partially reversible. While
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we believe that many of the qualitative properties of our results stay the same,

pursuing such an extension is beyond the scope of this paper.
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Appendix

A Additional material for Sections 2 and 3.1

A.1 Learning process as the continuous limit

Consider a discrete model where the number of agents is n and where the period

length is dt. Let the signal process be such that in each period, each agent who

has stopped generates a normally distributed conditionally iid. signal:

yit ∼ N

(
µωdt

n
,
σ2dt

n

)
.

This normalization keeps the informativeness of the aggregate signal constant

while letting the number of small agents to grow as in Bergemann and Välimäki

(1997).

When the number of agents who has stopped is k ≤ n, this implies the following

aggregate signal:
k∑
i=1

yit ∼ N

(
µωdt

k

n
, σ2dt

k

n

)
.

Let q = k/n denote the fraction of agents who have stopped. Now, the signal

process (1) follows once we take the limit when n→∞ (and k →∞ so that k/n

stays fixed) and dt→ 0.

Notice that the limiting distribution for the aggregate signal depends only on

the mean and the variance of yit (the central limit theorem). Hence, the signal

process (1) is also the limiting process for the case where yit is not normally dis-

tributed, including the case where agents communicate through binary signals.

Furthermore, we can rewrite the model so that the individual signals represent

realized payoffs in a model where agents start receiving a stochastic flow payoff

after stopping: πt(θ) = πω(θ) + εt(θ) where εt(θ) ∼ N (0, σ2(πH(θ)− πL(θ))2).

The noise term is scaled so that every increment in q is equally informative.

This assumption is not necessary: we analyze in Online Appendix the case of

heterogeneous informativeness and show that both the analysis and the qualita-

tive results remain unchanged if the stopping profile is monotone. When we set
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πω(θ) = rvω(θ), the expected stopping payoff is xtvH(θ) + (1−xt)vL(θ) just like in

the main text. Since there are no further actions after stopping, it does not matter

how fast the agents learn privately after they have stopped: the parameter σ can

be interpreted to capture both the noise in the private learning and the noise in

communication.

A.2 Proof of Lemma 1

Proof. Let policy Q be fixed. Type θ wants to stop at time t if

xtvH(θ) + (1− xt)vL(θ) ≥ E[e−r(τ−t)(xτvH(θ) + (1− xτ )vL(θ))|Ft;Q],

for all stopping rules τ . Or equivalently,

vL(θ)(1− xt − E[e−r(τ−t)(1− xτ )|Ft;Q]) + vH(θ)(xt − E[e−r(τ−t)xτ |Ft;Q]) ≥ 0.

The left-hand side is increasing in θ because expressions (1−xt−E[e−r(τ−t)(1−

xτ )]) and (xt−E[e−r(τ−t)xτ ]) are positive (follows from that xτ is a martingale and

e−r(τ−t) < 1) and vω is increasing. Therefore, if type θ wants to stop, type θ′ > θ

wants to stop too.

A.3 Proof of Lemma 2

Proof. T and T mon are both consistent with Q. We show that monotone stopping

ordering maximizes ex post welfare for all realized paths of (X,Q). The claim

follows once we show that for all types θ, θ′ ∈ [θ, θ] such that θ > θ′ and for all

realized stopping times t, t′ ∈ R+ such that t ≤ t′,

e−rtvω(θ) + e−rt
′
vω(θ′) ≥ e−rt

′
vω(θ) + e−rtvω(θ′).

The above condition is equivalent with (e−rt − e−rt′)(vω(θ) − vω(θ′)) ≥ 0, which

necessarily holds as t ≤ t′ and vω(θ) ≥ vω(θ′) by assumption if θ > θ′.
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B Decentralized equilibrium

B.1 Proof of Proposition 1

We will show that the policy in Proposition 1 is a decentralized equilibrium. Fix

policy Q to be the boundary policy in Proposition 1 and consider optimal stopping

of type θ against it. Except possibly at the initial time t = 0, the state (xt, qt) will

remain in set X that we call the feasible region:

X : =
{

(x, q) : 0 ≤ q ≤ 1, 0 < x ≤ xE (q)
}
.

Since Q is a Markovian process, we can express the stopping problem of type θ as

a Markovian problem, where the task it to choose optimally a stopping set Sθ ⊆ X

in the feasible region. (We will also check at the end that the optimal behavior

outside of X is consistent with the initial jump at time t = 0.) Denote by Fθ (x, q)

the value function under optimally chosen stopping set Sθ:

Fθ (x, q) = E
(
e−rτ(Sθ)uθ

(
xτ(Sθ)

) ∣∣∣∣x, q) ,
where τ(Sθ) = inf (t : (xt, qt) ∈ Sθ) is the first hitting time of Sθ and uθ (x) :=

xvH (θ) + (1− x) vL (θ) is the stopping value at belief x.

Before analyzing the shape of the optimal stopping set, we can already conclude

some basic properties of Fθ (x, q). In the stopping set, (x, q) ∈ Sθ, we must have

Fθ (x, q) = uθ (x). In the continuation set, (x, q) ∈ X\Sθ, the properties of Fθ (x, q)

are determined by the infinitesimal generator of the process (xt, qt)t≥0. Althought

the process is two-dimensional, qt increases only when xt hits new historical record

values and the set of such times is of zero measure. The process qt is hence constant

almost everywhere and the infinitesimal generator of (xt, qt) in the interior of X\Sθ
reduces to that of the process xt as if qt is fixed. We can write the infinitesimal

generator of xt as (see e.g. Peskir, Shiryaev and Shirayev (2006)):
x2 (1− x)2 q

2σ2
∂2

∂x2 .

It follows that the Hamilton-Jacobi-Bellman equation for the agent’s value in the

interior of X\Sθ takes the form:

rFθ (x, q) = x2 (1− x)2

2σ2 q
∂2Fθ (x, q)

∂x2 .
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This is a partial-differential equation of Fθ (x, q), but it only involves derivatives

with respect to x, and we can write its general solution in closed form as:

Fθ (x, q) = Aθ (q) Φ (x, q) +Bθ (q) Φ̃ (x, q) , (12)

where Aθ (q) and Bθ (q) are functions of q (we index by θ to emphasize where

dependence on type enters), and where

Φ (x, q) = xβ(q) (1− x)1−β(q) ,

Φ̃ (x, q) = x1−β(q) (1− x)β(q) ,

β (q) = 1
2

(
1 +

√
1 + 8rσ2

q

)
.

At the boundary xE (q), the stock qt increases instantaneously as x hits new record

values. Whenever such a boundary point is in the continuation region, the fol-

lowing condition of normal reflection must hold (Peskir, Shiryaev and Shirayev

(2006)):15

∂

∂q
[Fθ (x, q)]x=xE(q) = 0. (13)

As a preliminary step, we solve an auxiliary optimal stopping problem, where

the stock is assumed to be fixed at qt ≡ q forever:

Lemma 3. Assume that the stock is fixed at qt ≡ q forever. Then, it is optimal

for θ to stop if and only if xt ≥ x̂θ (q), where

x̂θ(q) = β(q)vL(θ)
β(q)vL(θ) + (1− β(q))vH(θ) .

The corresponding value function is

F θ (x; q) =

 uθ (x) if x ≥ x̂θ(q),(
x

x̂θ(q)

)β(q) ( 1−x
1−x̂θ(q)

)1−β(q)
uθ (x̂θ(q)) if x < x̂θ(q),

where uθ (x) := xvH (θ) + (1− x) vL (θ) is the stopping value at belief x.
15When the boundary xE (q) is hit, the time path of qt is not differentiable; the time derivative

dq/dt is unbounded. Therefore, if it were to be the case that ∂
∂q [Fθ (x, q)]x=xE(q) 6= 0, then the

expected instantaneous rate of change in the value function, E [dFθ (x, q)] /dt, would explode at
the moment of hitting the boundary.
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Proof. This is a standard one-dimensional optimal stopping problem and it is

well known that the solution is some stopping threshold that we denote x̂θ(q)

(see e.g. Dixit and Pindyck (1994) or the team problem in Bolton and Harris

(1999)). The value function, denoted F θ (x; q), must take the form (12) when

x < x̂θ(q). If it is certain that ω = L, then the option to stop is worthless and

we get the boundary condition F θ (0; q) = 0. This implies Bθ (q) = 0. The value-

matching condition F θ (x̂θ(q); q) = uθ (x̂θ(q)) and the smooth-pasting condition
∂
∂x
F θ (x̂θ(q); q) = ∂

∂x
uθ (x̂θ(q)) uniquely determine the remaining constant Aθ (q)

and the stopping threshold x̂θ(q) and we get the formulas given in the Lemma.

The lemma says that it is optimal to wait below x̂θ(qt) if qs is assumed fixed for

all s > t. If we relax this assumption and allow qs to increase arbitrarily for s > t,

then waiting at time t becomes even more desirable. This is because higher future

values of qs means improved future learning, which in turn will increase the value

of waiting relative to immediate stopping. The lemma therefore implies that no

matter what policy we have, it can never be optimal for θ to stop if xt < x̂θ(qt):

Lemma 4. If the current belief satisfies xt < x̂θ(qt), then stopping immediately is

strictly dominated for type θ.

Proof. Assume that the current belief is (xt, qt) = (x, q), where x < x̂θ(q). Con-

sider a simple strategy such that θ stops as soon as xt hits x̂θ(q) (no matter how

qt evolves). For a moment, assume that the stock is fixed at qs = q for all s > t.

Then by Lemma 3, this simple strategy gives value

F θ (x; q) =
(

x

x̂θ(q)

)β(q) ( 1− x
1− x̂θ(q)

)1−β(q)

uθ (x̂θ(q)) .

On the other hand, if we keep the threshold x̂θ(q) as above, but assume that the

current stock is fixed at a higher level, qs = q′ > q for all s > t, then the value of

this simple strategy gives
(

x

x̂θ(q)

)β(q′) ( 1− x
1− x̂θ(q)

)1−β(q′)

uθ (x̂θ(q))

>

(
x

x̂θ(q)

)β(q) ( 1− x
1− x̂θ(q)

)1−β(q)

uθ (x̂θ(q)) = F θ (x; q) ,
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Figure 6: Optimal stopping for type θ.

where the inequality follows from β (q) being decreasing in q. In other words,

the value of such a simple threshold strategy is increasing in the learning speed

determined by q. It then follows that for an arbitrary Q (where qt = q and qs ≥ q

for s > t), the value of the simple strategy of stopping at threshold x̂θ(q) is weakly

higher than F θ (x; q). This means that Fθ (x, q) ≥ F θ (x; q), where Fθ (x, q) is the

value of θ under optimal stopping rule (instead of the simple strategy). Since we

assumed x < x̂θ(q) , we have F θ (x; q) > uθ (x) by Lemma 3, and therefore also

Fθ (x, q) > uθ (x). Hence, stopping immediately cannot be optimal for θ.

With these preliminary results in place, we now consider the optimal stopping

policy of θ against Q. Our plan is to show that the optimal stopping region Sθ is

the dark blue shaded region in Figure 6, i.e.

Sθ =
{

(x, q) : q ≥ q (θ) , x ∈
[
x̂θ (q) , xE (q)

]}
. (14)

As a first step, we note that it cannot be optimal for θ to stop at any (x, q) ∈ X

with q < q (θ). This follows directly from Lemma 4 above. Since all (x, q) ∈ X

with q < q (θ) satisfy x < x̂θ (q), it is strictly dominant for θ to wait.

As a second step, we will show that when q ≥ q (θ), it is always optimal to stop

at the boundary of X, i.e. at x = xE (q). Suppose, to the contrary, that there is

some (x, q) /∈ Sθ, where x = xE (q) and q ≥ q (θ). This amounts to assuming that
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Fθ(xE (q) , q) > uθ(xE (q)). We will show below that this implies
∂

∂x
[Fθ (x, q)]x=xE(q) ≥

∂

∂x
[uθ (x)]x=xE(q) , (15)

which, as we will further show below, leads to a contradiction.

There are two possible cases that we consider separately. First, suppose that

even though
(
xE (q) , q

)
/∈ Sθ, it is optimal to stop at some lower belief, i.e. there

is some x′ < xE (q) such that (x′, q) ∈ Sθ (let x′ denote the highest such belief). In

that case Fθ (x′, q) = uθ (x′). The continuation value Fθ (x, q) takes the form (12)

in the interval
(
x′, xE (q)

)
with boundary condition Fθ (x′, q) = uθ (x′). Direct

calculations show that Fθ (x, q) is convex in x on the interval. Since we also

necessarily have Fθ (x, q) ≥ uθ (x) for all x ∈ (x′, xE(q)), (15) follows.

Second, suppose that it is optimal to wait for all (x, q), where x < xE (q), in

which case Fθ (x, q) > uθ (x) for all x < xE (q). The continuation value must vanish

as x → 0, and the corresponding boundary condition Fθ (0, q) = 0 implies that

the term Bθ in (12) vanishes. Hence, the value function Fθ (x, q) takes the form

Fθ (x, q) = Aθ (q) Φ (x, q) for some function Aθ (q) and hence ∂
∂x

[Fθ (x, q)]x=xE(q) =

Aθ (q) Φx

(
xE (q) , q

)
. Our assumption Fθ(xE(q), q) > uθ(xE (q)) is equivalent to

Aθ (q) Φ
(
xE (q) , q

)
> xE (q) vH (θ) +

(
1− xE (q)

)
vL (θ) ,

which further implies
∂

∂x
[Fθ (x, q)]x=xE(q) >

Φx (x (q) , q)
Φ (x (q) , q)

[
xE (q) vH (θ) +

(
1− xE (q)

)
vL (θ)

]
= β (q)− xE (q)

(1− xE (q)) vH (θ) + β (q)− xE (q)
xE (q) vL (θ) .

The last expression is greater than vH (θ)− vL (θ) if and only if

xE(q) ≥ β (q) vL (θ)
β (q) vL (θ) + (1− β (q)) vH (θ) = x̂θ (q) ,

which is the case if and only if q ≥ q (θ). Noting that ∂
∂x

[uθ (x)]x=xE(q) = vH (θ)−

vL (θ), we may conclude that (15) holds in this case too.

Given that (15) holds, the rate of change in Fθ (x, q) along the boundary is
d

dq
Fθ
(
xE (q) , q

)
= ∂

∂x
[Fθ (x, q)]x=xE(q)

d

dq
xE (q) + ∂

∂q
[Fθ (x, q)]x=xE(q)

= ∂

∂x
[Fθ (x, q)]x=xE(q)

d

dq
xE (q) ≥ ∂

∂x
[uθ (x)]x=xE(q)

d

dq
xE (q) = d

dq
uθ
(
xE (q)

)
,
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where the last term of the first line disappears by (13) and where the inequality

follows from (15).

We have now shown that Fθ(xE(q), q) > uθ(xE(q)) implies d
dq
Fθ
(
xE (q) , q

)
≥

d
dq
uθ
(
xE (q)

)
. Applying this iteratively to all q′ > q, we conclude that this im-

plies further that Fθ(xE(q′), q′) > uθ(xE(q′)) for all q′ ∈ [q, 1], and in particular

Fθ(xE(1), 1) > uθ(xE(1)). We know that xE(1) = 1, so this yields Fθ(1, 1) > vH(θ).

This is a contradiction, because vH (θ) is the stopping payoff under certainty of

state ω = H, which is clearly an upper bound for the value function for θ.

We conclude that it is optimal to stop at all boundary points for q > q (θ).

To see that this implies that it is also optimal to stop within the whole dark blue

shaded region in Figure 6, i.e.
{

(x, q) : q ≥ q (θ) , x ∈
[
x̂θ (q) , xE (q)

]}
∈ Sθ, note

that qt can only increase if xt reaches xE (q). Since θ stops at latest when xt reaches

xE(q), the optimal continuation value Fθ (x, q) cannot exceed the corresponding

value with q fixed, i.e. F θ (x; q). To achieve that value, θ should optimize as if q

is fixed, i.e. stop at all points
[
x̂θ (q) , xE (q)

]
.

We have now shown that the stopping rule defined in (14) maximizes (3) for

policy Q. Since qt can only increase at the boundary points xE(q), the first point

in Sθ ever reached is (x̂θ (q (θ)) , q (θ)) and so the optimal stopping rule commands

θ to stop exactly when qt reaches 1−F (θ) and is therefore consistent with Q. Since

the initial state point (x0, q0) may be above the boundary, we must also check the

optimal behavior of θ for initial state points (x0, q0) /∈ X. If (x0, q0) /∈ X, then

Q commands the stock to jump instantenously to point q0+ :=
{
q : xE (q) = x0

}
.

The point (x0, q0+) is in the optimal stopping region of θ if and only if x0 ≥

x̂θ (q (θ)), and therefore it is optimal for θ to stop at time t = 0 if (x0, q0) /∈ X and

x0 ≥ x̂θ (q (θ)). We conclude that the optimal stopping region of θ contains also

the light shaded region in Figure 6. This means that the initial jump from (x0, q0)

to (x0, q0+) is consistent with all types θ ≥ θ (q0+) optimally stopping at t = 0.

Collecting all this together, we can conclude that Q is a decentralized equilibrium.

It remains to prove the uniqueness part of the proposition, i.e. that no other

equilibrium policies exist than the boundary policy defined in the proposition. For

this it sufficies to show that in any equilibrium qt cannot increase at state points
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where xt < xE (qt) and qt cannot stay put at state points where xt > xE (qt).

Take some decentralized equilibrium policy and some arbitrary history ht with

current state (xt, qt). Since by Lemma 1 optimized stopping times are monotone

in θ, it must be that types θ > θ (qt) have stopped while types θ < θ (qt) have not

yet stopped at ht. We now show that for the cutoff type θ (qt) both waiting above

the boundary xE (qt), and stopping below the boundary xE (qt), are inconsistent

with Q being an equilibrium.

Consider first the case where the state after history ht satisfies xt < xE (qt).

But then xt < x̂θ (qt) for all types θ ≤ θ (qt) (this is because x̂θ(qt) (qt) = xE (qt)

and x̂θ (qt) is decreasing in θ). By Lemma 4 it is strictly dominant for all types

who have not yet stopped to wait. We conclude that qt cannot increase at ht.

Consider next the case where the state after history ht satisfies xt > xE (qt).

For contradiction, suppose that it is optimal for the cut-off type θ (qt) to wait, i.e.

it is optimal to choose some stopping time τ that gives

E
(
e−rτuθ(qt) (xτ ) |ht

)
> uθ(qt) (xt) .

By Lemma 1, equilibrium stopping times are monotone in θ and so the lower types

must wait even longer, i.e. optimal stopping times for types θ < θ (qt) satisfy

τ (θ) ≥ τ a.s. But this means that qt stays fixed until τ , and hence the same

stopping time τ would give type θ (qt) a payoff strictly higher than uθ(qt) (xt) also

in the auxiliary problem analyzed in Lemma 3, where qt is fixed by assumption.

Since we have xt > xE (qt) = x̂θ(qt) (qt), this is a contradiction with Lemma 3. We

conclude that it cannot be optimal for the cut-off type θ (qt) to delay stopping.

Since this conclusion holds for the cut-off type in any state value (xt, qt) satisfying

xt > xE (qt), the only policy consistent with players choosing optimally their

stopping times is the one where qt jumps immediately to the boundary point q

satisfying xE (q) = xt.
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C Socially optimal policy

C.1 Interpretation as a single-agent experimentation prob-

lem

Suppose a decision maker chooses quantity qt ∈ [0, q] over continuous time t.

Quantity expansions are irreversible so that qt ≥ qt′ for all t > t′. The decision

maker discounts the future with rate r > 0. Just as in the main model, the

unknown state of the world can be either high or low, ω ∈ {L,H}, with belief xt.

Information about the state arrives according to Process (1). Given the processes

for the quantity, Qt, and the belief, Xt, the decision maker’s payoff is

E
[∫ ∞

0
e−rt (xtπH(qt) + (1− xt)πL(qt)) dt

∣∣∣∣x, q;Q] ,
where πω(qt) is the decision maker’s flow payoff in state ω. We assume that it

is twice differentiable and strictly concave and that π′H(0) > 0, π′L(0) < 0, and

π′H(q) < 0 for q above some q.

The model captures situations where a single firm or government controls in-

cremental investments in a new technology or expansion to a new market and

learns gradually from its own experiences. For such applications, one may want

to interpret the flow payoffs to include the sunk cost of the investment such that

πω(qt) = π̂ω(qt)− rC where π̂ω(qt) is the utility from the new technology and C is

the lump-sum cost per unit of capital. Similarly, R&D or development aid projects

tie resources for many years and information about the outcomes arrives gradu-

ally over different stages of the project. In addition, the model applies to policy

making more broadly. As a concrete example, consider educational policy, such

as the maximum size of a classroom, which has an irreversible impact on children.

Later labor market outcomes and other information we collect from each cohort

helps to evaluate the educational policy at the time when they went to school,

independent of whether the norms have changed since then. Similarly, the model

maps to the optimal level of emissions under uncertainty about the environmental

damage. Once created, it is hard to reduce a stock of emissions. Arguably, we can

learn the true effects of emissions only gradually from experience.
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Notice that the decision maker’s objective is identical to the planner’s problem

analyzed in Section 3.5 when using r−1πω(q) as vω(q). The results and the solution

technique developed in this paper apply to the decision maker’s expansion problem

as such.

C.2 Omitted calculations

We use the derivatives of Φ(x, q) in many proofs of this section:

Φ =
(

x

1− x

)β(q)
(1− x),Φq = Φβ′(q) ln

(
x

1− x

)
,

Φx =Φ(β(q)− x)
x(1− x) ,Φxx = Φβ(q)(β(q)− 1)

x2(1− x)2 = Φ 2rσ2

x2(1− x)2q
,

Φqx =Φβ′(q)x−1(1− x)−1

1 + (β(q)− x) ln
(

x

1− x

),
Φxxq =Φ β′(q)

x2(1− x2)

[
β(q) + (β(q)− 1)(1 + β(q) ln

(
x

1− x

)
)
]
.

Deriving the differential equation

We first show that the conditions (7) and (8) imply the differential equation in

(9). Solving (7) and (8) for Bq(q) and B(q) yields

Bq (q) = A1 (x∗(q), q)x∗(q) + A2 (x∗(q), q) , (16)

B (q) = U1 (x∗(q), q)x∗(q) + U2 (x∗(q), q) , (17)

where

A1 (x, q) : = −Φqx (x, q) (vH(q)− vL(q))
Φ (x, q) Φqx (x, q)− Φq (x, q) Φx (x, q) ,

A2 (x, q) : = Φqx(x, q)(−vL(q)) + Φq (x, q) (vH(q)− vL(q))
Φ (x, q) Φqx (x, q)− Φq (x, q) Φx (x, q) ,

U1 (x, q) : = Φx (x, q) (vH(q)− vL(q))
Φ (x, q) Φqx (x, q)− Φq (x, q) Φx (x, q) ,

U2 (x, q) : = −Φx (x, q) (−vL(q))− Φ (x, q) (vH(q)− vL(q))
Φ (x, q) Φqx (x, q)− Φq (x, q) Φx (x, q) .
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Differentiating (17) with respect to q and using the chain rule gives

Bq (q) =
[
U1
x (x∗(q), q)x∗′(q) + U1

q (x∗(q), q)
]
x∗(q) + U1 (x∗(q), q)x∗′(q)

+ U2
x (x∗(q), q)x∗′(q) + U2

q (x∗(q), q) (18)

Equating (16) and (18), solving for x∗′(q), and simplifying yields the expression

(9) in the text.

Any solution that satisfies the differential equation (9) must be continuous.

C.3 Proof of Proposition 2

The proof contains three parts. In part 1, we show that the initial value problem

(9) has a solution x∗(q) that we take as our candidate for socially optimal policy.

The candidate is continuous and strictly increasing and hence defines a boundary

policy. In part 2, we show that our candidate policy x∗(q) satisfies the HJB

equation (5). In part 3, we verify that the solution to the HJB equation solves the

original problem.

Part 1: solution to the initial value problem (9)

We first establish some key properties of function g in (9) (all proofs of the lemmas

are in Appendix C.4):

Lemma 5. For all (x, q) such that q < 1 and x ≤ xE(q), function g(x, q) in (9)

is strictly positive and strictly increasing in x and it is Lipschitz continuous for

all q ∈ [0, q1] if q1 < 1 and for all x ≤ xE(q). Furthermore, g(xE(q), q) > xE
′(q)

for q < 1 and limq→1 g(xE(q), q) = xE
′(1).

The singularity at (1,1) prevents us from directly applying the Picard-Lindelöf

theorem to show the existence and uniqueness of a solution to the initial value

problem (9). Instead, we note that the requirements for the Picard-Lindelöf the-

orem are satisfied for all initial conditions x(q1) = x1 where x(q1) ≤ xE(q1) and

q1 < 1, and hence each such initial value problem defines a unique solution. Since

g is increasing in x, these solutions diverge when approaching (1, 1) and hence
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at most one path can approach (1, 1) from below the decentralized policy. The

fact that limq→1 g(xE(q), q) = xE
′(1) implies that there is a path that approaches

(1, 1) from the same direction as the decentralized policy xE(q) and the fact that

g(xE(q), q) > xE
′(q) for q < 1 implies that such a path must be strictly below the

decentralized solution for all q < 1. It follows that the initial value problem has a

unique solution below the decentralized solution.

We have now shown that the initial value problem (9) has a unique solution

x∗ such that x∗(q) ≤ xE(q) for all x ≤ q. This solution x∗(q) is continuous and

strictly increasing in q, and it is our candidate policy.

Part 2: our candidate x∗ solves the HJB equation

Fix x∗(q) to be the candidate policy defined in Part 1 and let q∗ (x) be its inverse

with the convention q∗ (x) = 0 for x ≤ x∗ (0). By construction of this policy, the

value function of the planner following x∗ is:

V ∗ (x, q) =


∫ q∗(x)
q (xvH (s) + (1− x) vL (s)) ds+B (q∗ (x)) Φ (x, q∗ (x)) for q < q∗ (x)

B (q) Φ (x, q) for q ≥ q∗ (x) ,
(19)

where Φ (x, q) = xβ(q) (1− x)1−β(q) and B(q) is given by (17), which simplifies to:

B (q) = x∗ (q) (β (q)− 1) vH (q) + (1− x∗ (q)) β (q) vL (q)
Φ (x∗ (q) , q) β′ (q) . (20)

Recall also that we have derived x∗(q) and B(q) utilizing conditions (7) - (8),

which must therefore hold. We rewrite them for convenience as:

V ∗q (x∗(q), q) + x∗(q)vH(q) + (1− x∗(q))vL(q) = 0, (21)

V ∗qx(x∗(q), q) + vH(q)− vL(q) = 0. (22)

We next state three lemmas that state some further properties of the value function

(19) that hold below, above, and at the boundary, respectively. These are derived

from (19) - (22) and are proved in a separate section, Appendix C.4.

Lemma 6. For all (x, q) with q < q∗ (x), we have

V ∗xx (x, q) = V ∗xx (x, q∗ (x)) = B (q∗ (x)) Φxx (x, q∗ (x)) .
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Lemma 7. For all (x, q) with q > q∗ (x), we have

V ∗q (x, q) + xvH (q) + (1− x) vL (q) ≤ 0.

Lemma 8. For all (x, q∗(x)) with q∗ (x) > 0, we have

V ∗(x, q∗(x))
q∗(x) + xvH (q∗(x)) + (1− x) vL (q∗(x)) > 0.

Next, we show that the value function V ∗(x, q) in (19) satisfies

rV ∗ (x, q) = max
q′≥q

Π (q′; q) ,

where

Π (q′; q) = r
∫ q′

q
(xvH (s) + (1− x) vL (s)) + 1

2V
∗
xx (x, q′) x

2 (1− x)2

σ2 q′. (23)

Using Lemma 6, we can write

V ∗xx (x, q′) =


B (q∗ (x)) Φxx (x, q∗ (x)) = B (q∗ (x)) Φ (x, q∗ (x)) 2rσ2

x2(1−x)2q∗(x) for q′ < q∗ (x)

B (q′) Φxx (x, q′) = B (q′) Φ (x, q′) 2rσ2

x2(1−x)2q′
for q′ ≥ q∗ (x) ,

where we have also utilized

Φxx(x, q) = Φ(x, q) 2rσ2

x2(1− x)2q
.

We can now rewrite (23) as

Π (q′; q) :=

 r
∫ q′
q (xvH (s) + (1− x) vL (s)) + rB (q∗ (x)) Φ (x, q∗ (x)) q′

q∗(x) for q′ < q∗ (x)

r
∫ q′
q (xvH (s) + (1− x) vL (s)) + rB (q′) Φ (x, q′) for q′ ≥ q∗ (x) .

The function Π (q′; q) is continuous in q′ and its derivative is:

dΠ (q′; q)
dq′

=

 r (xvH (q′) + (1− x) vL (q′)) + rB(q∗(x))Φ(x,q∗(x))
q∗(x) for q′ < q∗ (x)

r (xvH (q′) + (1− x) vL (q′)) + r (Bq (q′) Φ (x, q′) +B (q′) Φq (x, q′)) for q′ > q∗ (x)

=


r
(

(xvH (q′) + (1− x) vL (q′)) + V ∗(x,q∗(x))
q∗(x)

)
for q′ < q∗ (x)

r
(

(xvH (q′) + (1− x) vL (q′)) + V ∗q (x, q′)
)

for q′ > q∗ (x)
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From Lemma 7, it follows that dΠ(q′;q)
dq′

≤ 0 for q′ > q∗ (x). Noting that vH(q) and

vL(q) are decreasing in q, it follows from Lemma 8 that dΠ(q′;q)
dq′

> 0 for q′ < q∗ (x).

Therefore, we have

max
q′≥q

Π (q′; q) =

 Π (q∗ (x) ; q) for q < q∗ (x)

Π (q; q) for q ≥ q∗ (x)

=

 r
∫ q∗(x)
q (xvH (s) + (1− x) vL (s)) + rB (q∗ (x)) Φ (x, q∗ (x)) for q < q∗ (x)

rB (q) Φ (x, q) for q ≥ q∗ (x) .
= rV ∗ (x, q)

Notice as well that from Lemma 6 we have that the partial derivative V ∗xx is

continuous. Thus, our candidate V ∗ satisfies the HJB equation (5).

Part 3: verification

The verification of the solution follows from the standard arguments in the lit-

erature (see e.g. Fleming and Soner (2006)). Let V ∗ be the candidate solution

(19), which also solves the HJB equation (5) and let q∗(x, q) = max{q, q∗(x)} be

the corresponding q∗. Then, let T ≥ t be the time at which the candidate value

function is evaluated. From generalized Itô’s formula we have16

e−rTV ∗(xT , qT ) = e−rtV ∗(xt, qt)−
∫ T

t
e−rsrV ∗(xs, qs)ds+

∫ T

t
e−rsV ∗x (xs, qs)dxs

+
∫ T

t
e−rsV ∗q (xs, qs)dqs + 1

2

∫ T

t
e−rsV ∗xx(xs, qs)d[x]s + 1

2

∫ T

t
e−rsV ∗qq(xs, qs)d[q]s

+
∫ T

t
e−rsV ∗qs(xs, qs)d[q, x]s

where d[x]t and d[q]t are the quadratic variations of x and q and d[x, y]t is their

quadratic covariation. The process Qt has bounded variation and hence d[q]t =

d[x, y]t = 0. Notice also that dxt = xt(1 − xt)σ−1√qtdwt and d[x]t = x2
t (1 −

xt)2σ−2qtdt. We can further simplify the equation by noting that V ∗q dq = −(xvH(q)+

(1−x)vL(q))dq. The HJB equation gives an upper bound for qs
σ2x

2
s(1−xs)2V ∗xx(xs, qs)−

rV ∗(xs, qs) ≤
∫ q∗(xs,qs)
qs

(xvH(q) + (1− x)vL(q))dq, which equals zero for almost all
16To see that V ∗ ∈ C2 check V ∗x at the boundary. The continuity of V ∗xx and V ∗qq follows from

Lemma 6 and the continuity of V ∗q and V ∗qx are implied by conditions (7) and (8).
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s. Combining gives:

e−rTV ∗(xT , qT ) ≤ e−rtV ∗(xt, qt)−
∫ T

t
e−rs(xsvH(qs) + (1− xs)vL(qs)))dqs

+
∫ T

t
e−rsVx

∗(xs, qs)
√
qs
σ
xs(1− xs)dws.

Taking conditional expectations , multiplying by −ert and simplifying then

gives

V ∗(xt, qt) ≥ E

 ∫ T

t
e−r(t−s)(xsπH(qs) + (1− xs)πL(qs))ds+ e−r(T−t)V ∗(xT , qT )|Ft

.
The candidate value function is bounded and therefore clearly satisfies the

transversality condition: limT→∞ E[e−r(T−t)V ∗(xT , qT )] = 0. Hence, taking the

limit T →∞ gives that V ∗(x, q) ≥ maxQ U(Q;x, q).

The last step is to use the fact that Q, induced by policy x∗, achieves the

pointwise maximum of the HJB-equation and thus the inequalities above become

equalities: V ∗(x, q) = maxQ U(Q;x, q). Our solution solves the original problem.

C.4 Proof of Lemmas 5, 6, 7, and 8

Proof of Lemma 5. Taking the derivative of g(x, q) with respect x gives:

gx(x, q) =−
[
β′′(q)

(
x2(1− 2x)(β(q)− 1)3vH(q)2 − 2(1− x)xβ(q)(β(q)− 1)

× vH(q)vL(q)((1− 2x)β(q)− x) + (1− x)2(1− 2x)β(q)3vL(q)2
)

+ β′(q)
(

2x2(2x− 1)(β(q)− 1)2vH(q)2β′(q) + (1− x)2β(q)2vL(q)

×
(

2(1− 2x)vL(q)β′(q)− 2x(β(q)− 1)v′H(q)− (1− 2x)β(q)v′L(q)
)

+ xvH(q)
(

4(1− x)vL(q)β′(q)
(
(1− 2x)β(q)2 + 2xβ(q) + x

)
− x(β(q)− 1)2

(
(1− 2x)(β(q)− 1)v′H(q) + 2(1− x)β(q)v′L(q)

)))]
/[

(x(β(q)− 1)2vH(q) + (1− x)(β(q))2vL(q))2β′(q)
]
.

Both g(x, q) and gx(x, q) are bounded if their denominators are bounded away

from zero. We show that this is true if q < 1 and x ≤ xE(q) by showing that it
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holds at x = xE. First for the denominator of g(x, q) we have:

xE(q)(β(q)− 1)2vH(q) + (1− xE(q))(β(q))2vL(q) < 0, (24)

for all q ∈ [0, 1). Notice that the left-side is increasing in x and hence (24) implies

the same inequality for all lower x. The condition (24) is equivalent with

−(β(q)− 1)β(q)vH(q)vL(q)
β(q)vL(q)− (β(q)− 1)vH(q) < 0

which is true because the numerator is positive (other terms are positive except

vL(q) < 0) and the denominator is negative. Together with β′(q) < 0, this implies

that the denominator of g is strictly positive and bounded away from zero. We

can also conclude that both g and gx are bounded and continuous in both x and

q for all (x, q) such that q < 1 and x ≤ xE(q). Hence g is Lipschitz continuous for

all q < 1.

To see that g(x, q) > 0, it is now enough to show that the numerator of (9) is

strictly positive. First notice that the second term inside the brackets is always

positive but the first term can be negative.17 The first term is scaled by x, while

the second therm is scaled by (1 − x). Therefore, if the numerator is positive at

a belief above the boundary, it must be positive for the belief at the boundary

as well. Since the decentralized belief, xE(q), is always above the fully optimal

boundary, we can use it to show that the numerator is positive.

Plugging in xE(q) to the numerator of (9) and dividing by x(1− x) gives:

β(q)vL(q)
(
β′(q) (β(q)− 1) v′H(q)−

(
(β(q)− 1) β′′(q)− 2 (β′(q))2

)
vH(q)

)
β(q)vL(q) + (1− β(q))vH(q)

+
(1− β(q)) vH(q)

(
β′(q)β(q)v′L(q)−

(
β(q)β′′(q)− 2 (β′(q))2

)
vL (q)

)
β (q) vL (q) + (1− β (q)) vH (q) .

Since the denominator is negative (vL < 0 and β > 1), this is proportional to

[vH(q)v′L(q)− v′H(q)vL(q)]β′(q)β(q)(β(q)− 1)− 2vH(q)vL(q)(β′(q))2,

which is always positive because vH(q) > 0 and vL(q), v′H(q), v′L(q) < 0. Hence,

q(x, q) > 0 for all q ∈ [0, 1) and x ≤ xE(q).
17This follows from vL(q) < 0,v′ω(q) < 0, β′(q) < 0, β(q) > 1 and that β(q)β′′(q) > 2(β′(q))2.
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Similar direct calculations show that gx > 0 for all (x, q) such that q < 1 and

x ≤ xE(q).

Next, insert xE(q) to (dropping all dependencies) (9):

g(xE(q), q) =
−β(1−β)vLvH

(βvL+(1−β)vH)2

β′β(1−β)vLvH
βvL+(1−β)vH

(
β′β(1− β)(vLv′H − v′LvH)

βvL + (1− β)vH

+ βvLvH(−2β′2 + (β − 1)β′′)
βvL + (1− β)vH

+ (β − 1)vLvH(−2β′2 + ββ′′)
βvL + (1− β)vH

)

=vH (2vLβ′ − (β − 1)βv′L) + (β − 1)βvLv′H
((β − 1)vH − βvL)2 .

The derivative of the decentralized policy xE is

xE
′(q) =vH (vLβ′ − (β − 1)βv′L) + (β − 1)βvLv′H

((β − 1)vH − βvL)2 .

By subtracting xE ′(q) from g(xE(q), q), we get

g(xE(q), q)− xE ′(q) = β′(q)vL(q)vH(q)
(β(q)vL(q) + (1− β(q))vH(q))2 .

This expression is strictly positive for q < 1 and goes to zero as q goes to 1 (since

vH(q)→ 0).

Proof of Lemma 6. Fixing some (x, q) such that q < q∗ (x), differentiating (19)

twice with respect to x, and simplifying gives:

V ∗xx (x, q) = V ∗xx (x, q∗ (x)) (25)

+2 (q∗)′ (x)
(
V ∗qx (x, q∗ (x)) + vH (q∗ (x))− vL (q∗ (x))

)
+ (q∗)′′ (x)

(
V ∗q (x, q∗ (x)) + xvH (q∗ (x)) + (1− x) vL (q∗ (x))

)
+
(
(q∗)′ (x)

)2 (
V ∗qq (x, q∗ (x)) + xv′H (q∗ (x)) + (1− x) v′L (q∗ (x))

)
.

Noting that q∗(x) is the inverse function of x∗(q), the second term on the right-

hand side vanishes by condition (22) and the third term vanishes by the condition

(21). Let us look at the last term. First, since (21) holds along the boundary

(x, q∗ (x)), we can totally differentiate it with respect to x to get:

0 = V ∗qx (x, q∗ (x)) + V ∗qq (x, q∗ (x)) (q∗)′ (x) + vH (q∗ (x))− vL (q∗ (x))

+ [xv′H (q∗ (x)) + (1− x) v′L (q∗ (x))] (q∗)′ (x) .
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Applying (22), several terms disappear and this reduces to

V ∗qq (x, q∗ (x)) + xv′H (q∗ (x)) + (1− x) v′L (q∗ (x)) = 0.

The last term in (25) vanishes as well, and it follows that V ∗xx (x, q) = V ∗xx (x, q∗ (x)).

Proof of Lemma 7. If the claim is not true, there must be some x and q > q∗(x)

such that

V ∗q (x, q) + xvH(q) + (1− x)vL(q) > 0. (26)

We show that this leads to a contradiction by showing that (26) implies V ∗qx(x, q)+

vH(q) − vL(q) > 0, which further implies that (26) holds also for all beliefs in

[x, x∗(q)], including V ∗q (x∗(q), q) + x∗(q)vH(q) + (1 − x∗(q))vL(q) > 0, which con-

tradicts (21).

It remains to show that (26) implies V ∗qx(x, q) +vH(q)−vL(q) > 0. First notice

that V ∗q (x, q) = Bq(q)Φ(x, q)+B(q)Φq(x, q), which then together with (26) implies

Bq > −
Φq

Φ B − xvH + (1− x)vL
Φ

where we have left out all dependencies to simplify notation. We now get the

following lower bound:

V ∗qx + vH − vL = BqΦx +BΦqx + vH − vL

> −ΦqΦx

Φ B − Φx

Φ (xvH + (1− x)vL) +BΦqx + vH − vL

= Φ−1[B(ΦqxΦ− ΦqΦx) + Φ(vH − vL)− Φx(xvH + (1− x)vL)]. (27)

The first term can be simplified as

Φ−1B(ΦqxΦ− ΦqΦx) = BΦβ′
x(1− x) = Φβ′

x(1− x)
Φ∗x(x∗vH + (1− x∗)vL)− Φ∗(vH − vL)

Φ∗qxΦ∗ − Φ∗qΦ∗x

= x∗(1− x∗)
x(1− x)

Φ
Φ∗Φ∗ [Φ

∗
x(x∗vH + (1− x∗)vL)− Φ∗(vH − vL)],

where the notation Φ∗ refers to Φ(x∗(q), q).
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Now, (27) becomes

x∗(1− x∗)
x(1− x)

Φ
Φ∗Φ∗ [Φ

∗
x(x∗vH + (1− x∗)vL)− Φ∗(vH − vL)]

− 1
Φ[Φx(xvH + (1− x)vL)− Φ(vH − vL)]

= 1
x(1− x)

( Φ
Φ∗ ((β − 1)x∗vH + β(1− x∗)vL)− ((β − 1)xvH + β(1− x)vL)

)
,

(28)

where we have used the following for both terms inside the brackets:

Φ(vH − vL)− Φx(xvH + (1− x)vL) = Φ(vH − vL)− Φ β − x
x(1− x)(xvH + (1− x)vL)

= −Φ
x(1− x)((β − 1)xvH + β(1− x)vL).

To conclude that (28) is larger than 0, notice first that (β−1)xvH+β(1−x)vL < 0

whenever x < xE(q) and that it is increasing in x. Then observe that Φ/Φ∗ ∈ (0, 1)

and hence (β − 1)xvH + β(1− x)vL < (Φ/Φ∗)((β − 1)x∗vH + β(1− x∗)vL).

We conclude that V ∗q + xvH + (1− x)vL > 0 implies V ∗qx + vH − vL > 0 and the

proof is complete.

Proof of Lemma 8. By definition of function Φ (x, q), the following holds for all

x > 0, q > 0:

rB (q) Φ (x, q) = 1
2B (q) Φxx (x, q) x

2 (1− x)2

σ2 q.

Differentiating w.r.t. q, the following holds as well:

r (Bq (q) Φ (x, q) +B (q) Φq (x, q)) = 1
2B (q) Φxx (x, q) x

2 (1− x)2

σ2

+ 1
2 (Bq (q) Φxx (x, q) +B (q) Φxxq (x, q)) x

2 (1− x)2

σ2 q

= r
B (q) Φ (x, q)

q
+ 1

2 (Bq (q) Φxx (x, q) +B (q) Φxxq (x, q)) x
2 (1− x)2

σ2 q.

In particular, this holds for any q > 0, x = x∗ (q):

r (Bq (q) Φ (x∗ (q) , q) +B (q) Φq (x∗ (q) , q)) = r
B (q) Φ (x∗ (q) , q)

q

+ 1
2 (Bq (q) Φxx (x∗ (q) , q) +B (q) Φxxq (x∗ (q) , q)) x

∗ (q)2 (1− x∗ (q))2

σ2 q. (29)
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From (21), we have

r (x∗ (q) vH (q) + (1− x∗ (q)) vL (q))+r (Bq (q) Φ (x∗ (q) , q) +B (q) Φq (x∗ (q) , q)) = 0,

(30)

and so combining (29) and (30) we get

r (x∗ (q) vH (q) + (1− x∗ (q)) vL (q)) + r
B (q) Φ (x∗ (q) , q)

q
(31)

+1
2 (Bq (q) Φxx (x∗ (q) , q) +B (q) Φxxq (x∗ (q) , q)) · x

∗ (q)2 (1− x∗ (q))2

σ2 q = 0.

Plugging in (16) and (17) for B (q) and Bq (q), we get by direct computation at

x = x∗ (q):

Bq (q) Φxx (x∗ (q) , q) +B (q) Φxxq (x∗ (q) , q)

= x∗ (q) (β (q)− 1)2 vH (q)− (1− x∗ (q)) (β (q))2 vL (q)
x∗ (q)2 (1− x∗ (q))2 . (32)

Rearranging the equation that defines the policy function xE(q) of the decen-

tralized equilibrium in Proposition 1, we have

xE (q) (β (q)− 1) vH (q)−
(
1− xE (q)

)
β (q) vL (q) = 0.

We have shown in Part 1 of the Appendix C.3 that x∗ (q) < xE (q). Noting that

β(q) > 1, vH (q) > 0 and vL (q) < 0, it follows that

x∗ (q) (β (q)− 1)2 vH (q)− (1− x∗ (q)) (β (q))2 vL (q) < 0

and so it follows from (32) that

Bq (q) Φxx (x∗ (q) , q) +B (q) Φxxq (x∗ (q) , q) < 0. (33)

Combining (31) and (33) gives

r (x∗ (q) vH (q) + (1− x∗ (q)) vL (q)) + r
B (q) Φ (x∗ (q) , q)

q
> 0,

which is equivalent to

xvH (q∗ (x)) + (1− x) vL (q∗ (x)) + B (q∗ (x)) Φ (x, q∗ (x))
q∗ (x) > 0

for all x for which q∗ (x) > 0.
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C.5 Proof of Proposition 3

Proof. First, recall that x∗(0) < xE(0) = xstat(0) by the proof of Proposition 2.

Using this together with the continuity of the policy functions we find that there

exists q > 0 such that xstat(q) > x∗(q) for all q < q. As the policy functions are

strictly increasing and continuous, the stocks q∗(x) and qstat(x) are pinned down

as the inverse of the policy functions for all x ≥ x∗(0) and x ≥ xstat(0) respectively.

In addition, q∗(x) = 0 for all x ≤ x∗(0) and qstat(x) = 0 for all x ≤ xstat(0), and

hence q∗ and qstat are continuous.

Let x := xstat(q) > xstat(0) where the inequality follows from xstat being strictly

increasing. Then, qstat(x) < q∗(x) for all x ∈ [xstat(0), x) by that q∗ and qstat are

the inverse functions of x∗ and xstat. Furthermore, qstat(x) = 0 < q∗(x) for all

x ∈ [x∗(0), xstat(0)], which completes the proof.

Next, we show the other direction by showing that x∗(1) = xstat(1) = 1 and

x∗q(1) < xstatq (1). The first part is immediate. For the second part, use Lemma 5

and the uniqueness of the solution to get x∗q(1) = xEq (1). Now it is enough to show

that the derivative of the equilibrium is smaller than of the myopic solution:

xEq(1)− xstatq(1) =(β − 1)βvLv′H
(βvL)2 − vLv

′
H

(vL)2 = −vLv
′
H

βv2
L

< 0.

The myopic and optimal solutions meet at q = 1 but the optimal solution

reaches the point above the myopic solutions. Hence, by continuity there must

exist q < 1 such that x∗(q) > xstat(q) for all q ∈ (q, 1), which then further implies

the existence of x < 1 by the same argument as used above for x.

C.6 Proof of Proposition 4

Proof. Part (a): We show the result by contradiction. By using the solution from

Proposition 2 and the value function derived in its proof, we show that q∗ = 0

cannot maximize the HJB equation (5) in the limit as σ → 0 unless
√
q∗σ(x)/σ →

∞. If q∗(x) goes to any other value than 0, the claim immediately follows.
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By taking the first order condition from (5), we get

xvH(q∗) + (1− x)vL(q∗) + 1
2
x2(1− x)2

σ2 (Vxx(x, q∗) + Vxxq(x, q∗)q∗).

The first order condition is necessarily strictly positive at q∗ = 0 in the limit as

σ → 0 once we show that Vxx(x, q) > 0 and Vxxq(x, q) is finite.

Recall that the value function is V (x, q) = B(q)Φ(x, q) and its derivatives are

then Vxx = B(q)Φxx and Vxxq = Bq(q)Φxx + B(q)Φxxq. By plugging in the values

of Φxx, we get

Vxx =B(q)β(q)Φ(β(q)− 1)
x2(1− x)2 .

We know that B > 0 for all q < 1 in the optimal solution and that Φ > 0

for all x ∈ (0, 1). Then, Vxx > 0 whenever β > 1 which is true whenever the

signal-to-noise ration is finite.

We can write Vxxq as

Vxxq =(ΦxΦxxq − ΦqxΦxx)(xvH + (1− x)vL)
ΦΦqx − ΦqΦx

+ (ΦqΦxx − ΦΦxxq)(vH − vL)
ΦΦqx − ΦqΦx

.

The first term equals (β−x)2+x(1−x)
x2(1−x)2 (xvH + (1 − x)vL) and the second term equals

−β+(β−1)ln( x
1−x)

x(1−x) (vH − vL). Both are finite for all x ∈ (0, 1).

Hence, we conclude that for the first order condition to be satisfied, we must

have
√
q∗σ(x)/σ →∞ as σ → 0.

Part (b): We fix the belief to be x ∈ (0, 1). By rearranging the solution in

Proposition 1, we get

β(q) = xvH(q)
xvH(q) + (1− x)vL(q) .

We take the limit limσ→0 β(qEσ (x)) = xvH(0)
xvH(0)+(1−x)vL(0) , which is strictly larger than

1 for all x > xstat(q) and hence further implying that limσ→0

√
qEσ (x)/σ < ∞.

More precisely, we get the limit of the signal-to-noise ratio as a(x) satisfying
xvH(0)

xvH(0)+(1−x)vL(0) = 1
2

(
1 +

√
1 + 8ra(x)−2

)
.

C.7 Proof of Proposition 5

Take an arbitrary boundary policy q̃ (x) with inverse x̃ (q). The long-run stock,

denoted q∞, is equal to q̃ (x), where x := sup (xt |t > 0) is the long-run maximum
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value of the belief. Deriving the distribution of the long-run stock boils down

to deriving the distribution of the maximum value of the belief. We do that

utilizing the fact that the belief process xt is a martingale with continuous path

that eventually converges to truth.

Denote the initial belief by x0, and consider some x′ ∈ (x0, 1). Let τ (x′) :=

inf (t : xt ≥ x′) denote the time of reaching belief x′ (with the convention τx′ =∞

if x′ is never reached). Since xt has continuous path and will converge to either 0

or 1 (depending on true state), xτ(x′) is a random variable that takes value either

x′ or 0. By Doob’s optional sampling theorem, we have

x0 = E
(
xτ(x′)

)
= Pr (x ≥ x′) · x′ + Pr (x < x′) · 0,

from which we can solve

Pr (x ≥ x′) = x0

x′
.

On the other hand, we can write

Pr (x ≥ x′) = x0 Pr (x ≥ x′ |ω = H ) + (1− x0) Pr (x ≥ x′ |ω = L)

and since we know that the belief converges to truth, we have

Pr (x ≥ x′ |ω = H ) = 1.

Using the equations above, we can then solve for:

Pr (x ≥ x′ |ω = L) = x0 (1− x′)
x′ (1− x0)

and so

Pr (x ≤ x′ |ω = L) = 1− Pr (x ≥ x′ |ω = L) = x′ − x0

x′ (1− x0) .

Noting that

Pr (q∞ ≤ q |ω ) = Pr (x ≤ x̃ (q) |ω ) ,

we get the long-run distribution of the stock given in the proposition.

49



D Mechanism design

D.1 Proof of Proposition 6

Proof. Fix policy Q and posted price P (x, q) as in Proposition 6. To show that

Q is a decentralized equilibrium, we have to show that it is optimal for type θ to

stop at τ (θ) := inf {t : qt ≥ 1− F (θ)}. We call τ (θ) the intended stopping time

for type θ.

For an individual player this is a Markovian stopping problem with fixed policy

Q and stopping payoff given by (10). From the structure of the problem it is clear

that it is optimal for θ to stop at the first hitting time of some boundary point.

To see this, note that whenever the state (x, q) is above the boundary, it moves

immediately to the boundary point (x, q̃(x)) and since we have defined P (x, q) =

P (x, q̃ (x)) above the boundary, any player is indifferent between stopping at (x, q)

or (x, q̃(x)) (or any point between those). Furthermore, we have defined P (x, q)

to be so large below the boundary that no player wants to stop there. Since every

boundary point is an intended stopping point for some θ ∈
[
θ, θ

]
, we only have to

show that it is better for θ to stop at the intended stopping time τ (θ) than at the

intended stopping time for some other type τ
(
θ̃
)
, θ̃ 6= θ.

Denote by U
(
θ, θ̃

)
the expected value at time zero for type θ who intends to

stop at τ
(
θ̃
)
, θ̃ 6= θ. To complete the proof, we must show that U(θ, θ) ≥ U(θ, θ̃)

for all θ and for all θ̃.

We next proceed to derive the expression for U(θ, θ̃). Denote by P0
(
θ̃
)
the

expected discounted transfer payment that θ has to pay if she stops at the intended

stopping time τ
(
θ̃
)
:

P0
(
θ̃
)

:= E
[
e−rτ(θ̃)P

(
x
τ(θ̃), qτ(θ̃)

)]
.

Using (11), this can be written as:

P0
(
θ̃
)

= E
[
e−rτ(θ̃)x

τ(θ̃)vH
(
θ̃
)

+
(

1− x
τ(θ̃)

)
vL
(
θ̃
)]

−E
[∫ θ̃

θ
e−rτ(s)

(
xτ(s)v

′
H (s) +

(
1− xτ(s)

)
v′L (s)

)
ds

]
.
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With this, we get an expression for U
(
θ, θ̃

)
:

U
(
θ, θ̃

)
= E

[
e−rτ(θ̃)(x

τ(θ̃)vH(θ) + (1− x
τ(θ̃))vL(θ))

]
− P0

(
θ̃
)
.

Its partial derivative with respect to θ is

U1
(
θ, θ̃

)
= E

[
e−rτ(θ̃)(x

τ(θ̃)v
′
H(θ) + (1− x

τ(θ̃))v′L(θ))
]
. (34)

The key property that we want to prove is that U1
(
θ, θ̃

)
is increasing in θ̃. To do

that, note that applying the law of iterated expectations, we can write U1
(
θ, θ̃

)
in terms of the initial belief x0 as

U1
(
θ, θ̃

)
= x0E

(
e−rτ(θ̃)v′H (θ) |ω = H

)
+ (1− x0)E

(
e−rτ(θ̃)v′L (θ) |ω = L

)
= x0v

′
H (θ)E

(
e−rτ(θ̃) |ω = H

)
+ (1− x0) v′L (θ)E

(
e−rτ(θ̃) |ω = L

)
.

Since v′H (θ) ≥ 0 and v′L (θ) ≥ 0 (with at least one of the inequalities strict), both

terms in the above expression are positive. Type θ̃ enters the expression only

through the discounting terms E
(
e−rτ(θ̃) |ω

)
. Since θ′′ > θ′ implies that τ (θ′′) :=

inf {t : qt ≥ 1− F (θ′′)} ≤ τ (θ′) := inf {t : qt ≥ 1− F (θ′)} with probability 1, it

follows that E
(
e−rτ(θ̃) |ω

)
is increasing in θ̃ irrespective of state ω, and hence

U1
(
θ, θ̃

)
is increasing in θ̃ as well.

We now utilize this property to complete the proof. Note first that we have:

U(θ, θ) = E
[
e−rτ(θ)(xτ(θ)vH(θ) + (1− xτ(θ))vL(θ))

]
− P0(θ)

= E
[∫ θ

θ
e−rτ(s)

(
xτ(s)v

′
H(s) + (1− xτ(s))v′L(s))

)
ds

]
.

Therefore, for arbitrary θ′ and θ′′, we have

U(θ′′, θ′′)− U(θ′, θ′) = E
[∫ θ′′

θ′
e−rτ(s)

(
xτ(s)v

′
H(s) + (1− xτ(s))v′L(s))

)
ds

]
. (35)

We can now write:

U
(
θ, θ̃

)
= U

(
θ̃, θ̃

)
+
∫ θ

θ̃
U1
(
s, θ̃

)
ds ≤ U

(
θ̃, θ̃

)
+
∫ θ

θ̃
U1 (s, s) ds

= U
(
θ̃, θ̃

)
+ E

[∫ θ

θ̃
e−rτ(s)

(
xτ(s)v

′
H(s) + (1− xτ(s))v′L(s))

)
ds

]
= U (θ, θ) ,

where the inequality uses that U1
(
θ, θ̃

)
is increasing in θ̃, the second last equality

uses (34), and the last equality uses (35).
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