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Hints for Problem Set 3

1. Consider the following strategic form game:

a b c
A 0, 0 3, 4 6, 0
B 4, 3 0, 0 0, 0
C 0, 6 0, 0 5, 5

(a) Find all Nash equilibria of the static game.

Solution. There are three Nash equilibria: (A, b), (B, a), and a mixed strategy NE
((

3
7 ,

4
7 , 0
)
,
(
3
7 ,

4
7 , 0
))
,

with payoffs (3, 4), (4, 3), and
(
12
7 ,

12
7

)
, respectively.

(b) Suppose that the above described stage-game is repeated twice, so that before playing the second
stage the players observe each other’s action choices for the first stage. A player’s payoff is the
sum of the stage-game payoffs. Find all subgame perfect Nash equilibria.

Solution. This is a multi-stage game with observed actions where player i′s pure strategy is a
mapping si : Ht → Ai(h

t) and mixed (behavior) strategy a mapping σti : Ht → ∆(Ai(h
t)). That is,

si(h
t) tells what action to take in period t when the history of play is given by ht =

(
a0, a1, ..., at−1

)
.

Let t = 0, 1 so that player i’s strategy can be expressed as

σi =
(
σi(h

0), σi(h
1)
)
, ht ∈ Ht.

More specifically, the set of histories in the second stage is given byH1 = {Aa,Ab,Ac,Ba,Bb,Bc, Ca,Cb, Cc}.
The stage game has three Nash equilibria. In the twice-repeated game there are hence 3 · 3 = 9
subgame perfect equilibria in which some combination of stage-game Nash equilibria is played.1

Formally, denote by α = (α1, α2, α3) the set of stage game Nash equilibria, where αk =
(
αk1 , α

k
2

)
∈

∆(A1) ×∆(A2), k = 1, 2, 3. In addition, define a function j : T → {1, 2, 3} that selects for each
time period an element from α. Then for any map j(t) there is a subgame perfect equilibrium
characterized by

σt(ht) = αj(t), t = 1, 2,

where σt(ht) = (σt1(ht), σt2(ht)) .

In addition, there exist SPE which consist of play of strategy profiles which are not stage-game
Nash equilibria. The idea is that players coordinate on playing (C, c) in the first stage, and use
the mixed strategy Nash equilibrium as a punishment if either of them fails to coordinate in the
first stage. If (C, c) is played in the first stage then either (A, b) or (B, a) is played in the second
stage. Thus, we have two additional SPE as characterized below.

1To be precise, there are nine different equilibrium outcomes combining the stage game Nash equilibria, but there are more
strategy profiles leading to those outcomes. E.g. both players mixing in the first period and then playing Ab after realisation
Ba, Ba after realisation Ab, and mixing otherwise in the second period is a different equilibrium from any of the equilibria,
where period two behavior is independent of the realisation in the first period, but it gives the same realized path as one of
them.
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s1(h1) = C, s1(h2) =

{
B if h1 = (C, c)(
3
7 ,

4
7 , 0
)

if h1 6= (C, c)
,

s2(h1) = c, s2(h2) =

{
a if h1 = (C, c)(
3
7 ,

4
7 , 0
)

if h1 6= (C, c)
. Payoffs (9, 8).

s1(h1) = C, s1(h2) =

{
A if h1 = (C, c)(
3
7 ,

4
7 , 0
)

if h1 6= (C, c)
,

s2(h1) = c, s2(h2) =

{
b if h1 = (C, c)(
3
7 ,

4
7 , 0
)

if h1 6= (C, c)
. Payoffs (8, 9).

Since no player can improve his payoffs by a one-step deviation, the above strategy profiles are
indeed subgame perfect equilibria.

Other combinations of pure strategies, Aa,Ac,Ca,Bb,Cb,Bc, cannot be part of a SPE because
the second period punishment is not large enough to prevent deviations. Because the other player
does not observe a mixed strategy played but the realized action only, second period actions can
be contingent on the realizations only (or contingent on own mixed period one action). Therefore,
most mixed actions in the first period are ruled out in a SPE.

(c) Suppose that the players discount their stage-two payoffs relative to stage-one payoffs with discount
factor δ < 1. For which values of δ does an equilibrium exist where (C, c) is played?

Solution. Consider the SPE in which (C, c) is played in the first stage and (A, b) in the second
stage if no one deviates. Consider player 1. If he deviates in the first stage, he would obtain a
current gain of 1 but lose 3− 12

7 in the second stage due to punishment. Player 1 does not want
to deviate as long as 1 ≤ (3 − 12

7 )δ ⇔ δ ≥ 7
9 . Consider then player 2. If he deviates in the first

stage, he would get a current gain of 1 but would lose 4 − 12
7 in the second stage. Player 2 does

not want to deviate as long as 1 ≤ (4− 12
7 )δ ⇔ δ ≥ 7

16 . Hence, the proposed strategy profile is a
SPE when δ ∈

[
7
9 , 1
]
. By symmetry, for these values of δ, there exists also a SPE in which (B, a)

is played in the second stage if no one deviated in the first stage.

2. A popular strategy suggestion for playing a repeated prisoner’s dilemma is called tit-for-tat. In that
strategy, both players start by cooperating (C,C) and in any period t, they replicate the action of their
opponent in period t−1. Consider the infinitely repeated game where both players discount future with
discount factor δ < 1. The stage game payoffs are:

C D
C 3, 3 0, 4
D 4, 0 1, 1

Write down a formal definition for the tit-for-tat strategy. Is the strategy profile where both players
play tit-for-tat a Nash equilibrium? Is it a subgame perfect equilibrium?

Solution.

A tit-for-tat strategy for player i is defined as

ŝi(h
t) =


C if t = 0

C if at−1j = C, j 6= i

D otherwise.

Player i’s objective function is to maximize the normalized sum

Ui(s) = (1− δ)
∞∑
t=0

δtuti
(
sti(h

t), st−i(h
t)
)
.
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Notice that in prisoner’s dilemma, the unique stage game Nash equilibrium yields both players their
minmax payoff of 1.

Both players playing tit-for-tat is a Nash equilibrium for high enough δ. If both players always coop-
erate, they get normalized payoffs of 3. We cannot use OSDP for testing a NE since it is essentially
backward induction principle and hence restricted to testing a SPE. Therefore, we have to think what
would be the best deviation among all kind of deviations. Let’s take it given that player 2 follows
tit-fot-tat. Note first that if it is optimal for player 1 to play D in the first period, it is optimal to
play D whenever player 2 plays C, which happens iff player 1 has played C in the previous period.
Now we see that if (D,C) is optimal behavior in the first two periods, optimal strategy is to continue
(D,C,D,C . . . ) forever. Similarly, if (D,D) is optimal for the first two periods, it is optimal to continue
similarly: (D,D,D, . . . ). We can restrict our attention to these deviations.

u1(DC . . . , ŝ2) = (1− δ)
[
4(1 + δ2 + δ4 + ...) + 0

]
=

4

1 + δ
.

u1(DD . . . , ŝ2) = (1− δ)4 + δ = 4− 3δ.

Deviations are unprofitable when

3 ≥ 4

1 + δ
⇔ δ ≥ 1

3
.

3 ≥ 4− 3δ ⇔ δ ≥ 1

3
.

Is tit-for-tat strategy a subgame perfect equilibrium? For tit-for-tat strategy profile to constitute a
subgame perfect equilibrium, no player should have an incentive to deviate in any of the possible
subgames that could occur along any path of play if both players play according to their equilibrium
strategies. There are four types of subgames to consider, depending what happened in the previous
period. Let’s consider each of them at a time, using the one-step deviation principle:

1. The last realization was (C,C). If player 1 follows tit-for-tat, thus continuing with C, his payoff is
given by

(1− δ)
[
3
(
1 + δ + δ2 + ...

)]
= 3.

If player 1 deviates, the sequence of outcomes is (D,C), (C,D), (D,C), (C,D), ..., and his payoff will
be

(1− δ)
[
4
(
1 + δ2 + δ4 + ...

)]
=

4

1 + δ
.

Deviation is not profitable when δ ≥ 1
3 .

2. The last realization was (C,D). If player 1 follows tit-for-tat, the resulting sequence of outcomes will
be (D,C), (C,D), (D,C), ..., to which the payoff is 4

1+δ . If player 1 deviates and cooperates, the sequence
of outcomes will be (C,C), (C,C), (C,C), ..., to which the payoff is 3. Deviating is not profitable as
long as

4

1 + δ
≥ 3

⇔ δ ≤ 1

3
.

3. The last realization was (D,C). If player 1 follows tit-for-tat, the resulting sequence of outcomes
will be (C,D), (D,C), (C,D), ..., to which the payoff is given by

(1− δ)
[
0(1 + δ2 + δ4 + ...) + 4

(
δ + δ3 + δ5 + ...

)]
=

4δ

1 + δ
.
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If player 1 deviates and plays D instead, the sequence of outcomes will be (D,D), (D,D), (D,D), ...,
to which the payoff would be 1. Deviation is not profitable when 4δ

1+δ ≥ 1⇔ δ ≥ 1
3 .

4. The last realization was (D,D). Thus the sequence of play will be (D,D),(D,D),(D,D)..., which
will result in a payoff of 1. If player 1 deviates to C instead, it will result in a sequence of play
(C,D),(D,C),(C,D)... And the payoff will be

(1− δ)
[
0(1 + δ2 + δ4 + ...) + 4

(
δ + δ3 + δ5 + ...

)]
=

4δ

1 + δ
.

Deviation is not profitable as long as 4δ
1+δ ≤ 1⇔ δ ≤ 1

3 .

So, tit for tat is a subgame perfect equilibrium if and only if δ = (1/3).

3. Consider a two-stage game with observed actions, where in the first stage players choose simultaneously
U1 or D1 (player 1) and L1 or R1 (player 2), and in the second stage players choose simultaneously
U2 or D2 (player 1) and L2 or R2 (player 2). The payoffs of the stage games are shown in the tables
below:

First stage
L1 R1

U1 2, 2 -1,3
D1 3,-1 0, 0

Second stage
L2 R2

U2 6, 4 3, 3
D2 3, 3 4, 6

The players maximize the sum of their stage-game payoffs.

(a) Find the subgame perfect equilibria of this game.

Solution. In the first stage game there is only one Nash equilibrium, (D1,R1), since D1 and R1 are
strictly dominant actions for the players. In the second stage game, there are three Nash equilibria:
(U2,L2), (D2,R2), ((3/4,1/4),(1/4,3/4)). Like we have seen previously, any combination of these
Nash equilibria are a subgame perfect equilibrium, i.e. player 1 playing s11 = D1, s21(h2) = U2 ∀h2
and player 2 playing s12 = R1, s22(h2) = L2 ∀h2 is a subgame perfect equilibrium.

Note that we cannot support (U1, L1) as the first stage outcome with any punishment strategy
in the second stage game, since deviating yields a payoff of 1 and the mixed strategy equilibrium
still gives a payoff of (3.75), which is only 0.25 lower than what the player who is getting a lower
payoff either from (U2,L2), (D2,R2) is getting. Thus it is profitable for that player to deviate. We
can support (U1,R1) or (D1,L1) though by playing the Nash equilibrium in the second stage that
gives the higher payoff to the player that gets −1 in the first stage. So strategies defined as

s1(h1) = D1, s1(h2) =

{
D2 if h2 = (D1, L1)

U2 otherwise

s2(h1) = L1, s2(h2) =

{
R2 if h2 = (D1, L1)

L2 otherwise

Constitute a SPE with payoffs (7,5). Naturally, the strategies where player 1’s and 2’s roles are
reversed is also a SPE.

(b) Suppose that the players can jointly observe the outcome y1 of a public randomizing device before
choosing their first-stage actions, where y1 is drawn from uniform distribution on the unit interval.
Find the set of subgame perfect equilibria, and compare the set of possible payoffs agains the
possible payoffs in (a).

Solution. The public randomization device allows players to attain all payoffs contained in the
convex combinations of the previous SPE. That is the players can now condition their play on y1
and play different SPE depending on the value of y1. Thus all payoffs that are convex combinations
of (3.75, 3.75), (6, 4), (7, 5), (5, 7) and (4, 6) are now attainable.
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(c) Suppose that the players jointly observe y1 at the beginning of stage 1 and y2 at the beginning
of stage 2, where y1 and y2 are independent draws from a uniform distribution on a unit interval.
Again, find the subgame perfect equilibria and possible payoffs.

Solution. With y2 we can also attain all the convex combinations of the second stage game payoffs
separately, i.e. choosing one of (3.75,3.75), (6,4) or (6,4) is possible conditional on y2. This allows
us to support (U1,L1) as a first stage outcome. To see why, let’s consider the following strategies:

s1(h1) = U1, s1(h2) =


D2 if h2 = (U1, L1) and y2 <

1
2

U2 if h2 = (U1, L1) and y2 ≥ 1
2

( 3
4 ,

1
4 ) otherwise

s2(h1) = L1, s2(h2) =


R2 if h2 = (U1, L1) and y2 <

1
2

L2 if h2 = (U1, L1) and y2 ≥ 1
2

( 1
4 ,

3
4 ) otherwise

The expected payoff from second stage is now 5. By deviating the players can gain 1, but will lose
1.25 in the second stage, so (U1,L1) is supportable.

One can support similarly any not stage NE equilibrium, which gives the player, who would have in-
centives to deviate in a one-period game, a payoff of at least 4.75 in the second period. Thus the set
of attainable payoffs is now extended to the convex hull of (3.75, 3.75), (3.75, 8.25), (6.75, 7.25), (7.25, 6.75),
and (8.25, 3.75).

Following figure presents the SPE sets in parts (a), (b), and (c).

u1

u2

3.75

3.75 (a)

(b)

(c)

4. (Folk Theorem) Consider an infinitely repeated game with a stage game given in the following matrix:

L R
U 5, 0 0, 1
M 3, 0 3, 3
D 0,−1 0,−1

Players have a common discount factor.
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(a) Find the minmax payoffs for each of the players.

Solution. The minmax payoff are: v̂1 = 3, v̂2 = −1.

(b) Characterize the set of feasible payoff vectors of the stage game (Assume that a public random-
ization device is available).

Solution. A public randomization device enables all payoffs that are convex combinations of
some pure strategy payoffs (dots in the figure). The set is drawn in the figure below.

(c) What is the set of normalized payoff vectors for the repeated game, such that each element in the
set is a subgame perfect equilibrium payoff vector for some value of the discount factor?

Solution. Any feasible and strictly individually rational payoff is a normalized SPE payoff for an
infinitely repeated game with δ high enough. In addition, repeated play of a stage NE is always
a SPE. This is equivalent as having:

{SPE} = {(u1, u2)|(u1, u2) ∈ co{(0,−1), (0, 1), (3, 3), (3, 0), (5, 0)}, u1 > 3, u2 > −1} ∪ (3, 3).

Following figure illustrates this set.

u1

u2

stage NE

(b) (c)

(d) Can you construct some subgame perfect equilibrium strategies leading to the constant play of
(U,L) on the equilibrium path?

Solution. Strategies should punish players from deviations, including deviations from punishing
the other player. Punishments has to be sequentially rational (NEa for subgames starting from a
deviation). A natural punishment for player 1 is that player 2 always plays R. This punishment
is automatically sequentially rational since it leads to a continuous play of the stage NE.

Punishment path for player 2 is trickier: constant play of D is not part of a NE. There has to
be incentives for player 1 to do the punishment. In other words, the play should change back to
(U,L) in the future. Following startegies constitute a SPE with δ high enough:

ŝ1(ht) =


U if t = 0 or at−i2 = L ∀i ∈ {1, . . . , T} and player 1 has not deviated

M if player 1 has deviated

D if at−i2 = R for some i ∈ {1, . . . , T} and player 1 has not deviated

ŝ2(ht) =

{
L if player 1 has not deviated

R if player 1 has deviated.
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There are three different kind of states: the equilibrium path, the punishment path for player 1,
and the punishment path for player 2 (there are actually T different states on this path). We have
to check that no-one has a profitable one-step deviation in any of these states.

Player 1:

i. On the equilibrium path. Clearly, not.

ii. On the punishment path for player 1. No, it is a stage NE.

iii. On the punishment path for player 2. Deviation is not profitable iff

δT+15 ≥ (1− δ)5 + δ3⇔ δT+1 ≥ 1− 2

5
δ. (1)

Player 2:

i. On the equilibrium path. Deviation is not profitable iff

0 ≥ (1− δ)1− (δ − δT+1)⇔ δT+1 ≤ 2δ − 1. (2)

ii. On the punishment path for player 1. No, it is a stage NE.

iii. On the punishment path for player 2. No, there are no short term or long term gains.

By combining 1 and 2, we get 1 − 2
5δ ≤ δT+1 ≤ 2δ − 1. For T = 2, this is satisfied e.g. for all

δ > 0.9.

(e) Let’s change the game so that payoffs for (D,L) and (D,R) are (0, 0). Can there now be an
equilibrium with a constant play of (U,L)?

Solution. No, there cannot be a punishment for player 2 since she already gets her minmax payoff.
This would be the case even if the payoff structure was u (D,L) = (0, 0) and u (D,R) = (0,−1)
so that there was a lower feasible payoff but the minmax payoff was still 0.

5. Consider a model where two sellers sell an identical good to a single consumer (without storage possi-
bilities) over an infinite horizon. The firms compete by setting prices simultaneously at the beginning
of each period and the consumer chooses which of the prices to accept at the end of the stage. The
consumer has unit demand in each period, i.e. she is willing to pay up to v in each period to buy one
unit. Additional units are worthless to the buyer. Assume that the good can be produced at marginal
cost c.

(a) Suppose that the buyer is myopic, i.e. she has a discount factor δC = 0 whereas the firms are
patient and have a discount factor 0 < δF < 1. What is the smallest δF that is compatible with
collusive pricing in the market in subgame perfect equilibrium? I.e. for what δF is it possible
to set prices pit = v for all i and all t on the equilibrium path? What is the punishment path
supporting this? (Hint: what are the strategies of the players?)

Solution.

Let’s restrict to cases where the sellers don’t set prices above v. The buyer accepts at least one
price every period. If the buyer accepts both prices (when pit = pjt), both firms have an equal
probability of getting their good sold in that period. Since the buyer is myopic and maximizes her
periodic utility only, she does not condition her decision of acceptance on the publicly observed
history of prices. Therefore, let buyer’s strategy be given by

stB(pit) =

{
Accept if pit ≤ pjt
Reject otherwise

, i ∈ {1, 2} , i 6= j.

To find the smallest δF compatible with collusive pricing, the firms must use the most severe
punishment available so that even the most impatient firm has no incentive to deviate. The
minmax payoffs of both firms are 0, obtained when the price equals marginal cost c. Consider
therefore the following grim-trigger strategy profile of the firms as a candidate for a SPE:

sti(h
t) =


v if t = 0

v if aτ = (v, v)∀τ < t

c otherwise .
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For this strategy profile to be subgame perfect, there must be no profitable deviations starting
from any possible subgame. Suppose that in period t − 1 collusion was sustained and the vector
of quoted prices was (v, v). If firm i sticks to the equilibrium strategy from period t onwards, its
payoff is given by 1

2 (v − c). If it instead sets a price pit = v − ε, thereby selling its good with
certainty in period t, and confines to the equilibrium strategy profile thereafter, it obtains a payoff
of (1− δ) [(v − ε− c) + 0] . Deviation is not profitable as long as δ ≥ 1

2 .

(b) Suppose next that all players, i.e. the sellers as well as the buyer have the same discount factor
δ. Can you find an equilibrium where collusion is possible at a δ below that found in the previous
part? (Hint: try to construct strategies for the sellers that reward the buyer for not falling for a
price cut of the competitor)

Solution.

What the firms are now able to do, once the consumer is patient, is to condition the consumer’s
future payoffs on her actions today. They can ’punish’ the consumer if she falls for the price-cut
and in turn ’reward’ her for ignoring the price-cut and buying at the monopoly price instead. This
in turn will in equilibrium make it unprofitable for firms to break the collusion.

Consider the following strategies for the players.

Consumer: Buy at price pt = v as long as both firms quote it. If a unilateral price-cut of at
most ε∗ is observed in any period t, ignore it and buy at the monopoly price pt = v and thereafter
buy at the price of pτ = c in all periods τ > t. If a unilateral price-cut of more than ε∗ is observed
in any period t, buy at the lowest quoted price.

Firm i, i = 1, 2:

I. Quote price pit = v as long as no one has deviated. If a deviation occurs at t, and if consumer
buys from the defector, stay in I. If consumer does not buy from the defector, move to II.
II. Quote price piτ = c for all remaining periods.

Let us check whether these strategies constitute a subgame perfect equilibrium. Consider first
the consumer.

1. If no one has deviated, and pt = (v, v), she can only accept the price and get a payoff of 0.

2. If a price cut is observed in period t, and the lowest quoted price is p′ = v − ε, consumer does
not buy at p′ if and only if

(1− δ)

[
0 + (v − c)

∞∑
t=1

δt

]
≥ (1− δ) [ε+ 0]⇔ ε ≤ δ(v − c)

1− δ
≡ ε∗. (3)

Consider then firm i.

1. Suppose no one has deviated prior to time t. If firm continues quoting the monopoly price, it
gets a payoff of 1

2 (v − c). If it deviates and quotes a price pit = v − ε, what would its payoffs be?
Given equation (3), the best deviation available for firm i is to quote a price pit = v− ε?,. At this
price the consumer would just be willing to purchase, yielding the firm immediate gains as long
as v − ε? − c > 1

2 (v − c)⇔ ε? ≤ 1
2 (v − c). Deviation is not profitable if and only if

1

2
(v − c) ≥ (v − c)− δ(v − c)

1− δ
⇔ δ ≥ 1

3
.

2. Suppose that a deviation has occurred in t − 1 (and the consumer bought from the defector).
The choice that firms faces is the same as what it faces along the collusive path.

3. Suppose that a deviation has occurred in t−1 (and the consumer did not buy from the defector).
This leads to stage NE.

Therefore, collusive equilibrium exists iff δ ≥ 1
3 , which is less than in (a).
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