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1 Outline

� We now move to dynamic games

� We focus especially on Nash equilibrium re�nements induced by sequential
rationality: sub-game perfect equilibrium and sequential equilibrium

� Material: MWG Chapter 9

� Other relevant sources: Fudenberg-Tirole Ch. 3-4, 8.3, Osborne-Rubinstein
Ch. 6-7, 12, Myerson Ch. 4

� Some motivating examples:

1.1 Example: predation

� An entrant considers entry into an industry with a current incumbent �rm

� Entry costs 1 unit

� Monopoly pro�t in the industry is 4

� If entry takes place, the monopolist can either accomodate or �ght

� Accommodation splits monopoly pro�ts, whereas �ghting gives zero pro�t
to both �rms

� Will entrant enter, and if so, will incumbent �ght or accomodate?

� Normal form representation of the game:

Fight if entry Accommodate if entry
Enter �1; 0 1; 2
Stay out 0; 4 0; 4

� There are two Nash equilibria: (Enter, Accommodate) and (Stay out, Fight
if entry)

� Is one of the two equilibria more plausible?
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1.2 Example: quality game

� A producer can produce an indivisible good, and choose either high or low
quality

� Producing high quality costs 1 and bad quality 0

� Buyers values high quality at 3 and bad quality at 1

� For simplicity, suppose that good must be sold at �xed price 2

� Which quality will be produced and will the buyer buy?

� Normal form representation of the game:

High quality Low quality
Buy 1; 1 �1; 2

Do not buy 0;�1 0; 0

� Only one Nash equilibrium (Do not buy, Low)

� What if seller moves �rst?

� What if buyer moves �rst?

� What if seller moves �rst, but quality is unobservable?

1.3 Example: Stackelberg vs. Cournot

� Consider the quantity setting duopoly with pro�t functions

�i (qi; qj) = qi(1� q1 � q2); for all i = 1; 2:

� Suppose the players set their quantities simultaneously (Cournot model).
The unique Nash equilibrium is:
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� What if player 1 moves �rst? (Stackelberg model)

� After observing the quantity choice of player 1, player 2 chooses his quan-
tity.
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� Given the observed q1; �rm 2 chooses q2. Optimal choice is

BR2 (q1) =
1� q1
2

:

� Player 1 should then choose:

max
q1
u1 (q1; BR2 (q1)) =

�
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2

�
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2

:
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1.4 Example: matching pennies

Head Tail
Head 1;�1 �1; 1
Tail �1; 1 1;�1

� Nash equilibrium, where both players mix with 1/2 probabilities

� What if player 1 moves �rst?

� What if player 1 moves �rst, but choice is unobservable?

1.5 Discussion

� These examples illustrate that the order of moves is crucial

� Moving �rst may help (commitment to an action)

� Moving �rst may also hurt (matching pennies)

� The normal form representation misses the dynamic nature of events, so
we need to utilize extensive form representation

� The key principle is sequential rationality, which means that a player
should always use a continuation strategy that is optimal given the current
situation

� For example, once entrant has entered, the incumbent should act optimally
given this fact (accommodate)

� This will lead us to re�nements of Nash equilibrium, in particular subgame
perfect equilibrium (SPE) and sequential equilibrium
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2 Subgame perfect equilibrium

2.1 Subgame

� Consider an extensive form game with perfect recall

� A subgame is a subset of the original game-tree that inherits information
sets and payo¤s from the original game, and which meets the following
requirements:

1. There is a single node such that all the other nodes are successors of
this node (that is, there is a single initial node to the subgame)

2. Whenever a node belongs to the subgame, then all of its successor
nodes must also belong to the subgame.

3. Whenever a node belongs to the subgame, then all nodes in the same
information set must also belong to the subgame.

2.2 Subgame perfect equilibrium

De�nition 1 A strategy pro�le � of an extensive form game is a subgame per-
fect Nash equilibrium (SPE) if it induces a Nash equilibrium in every subgame
of the original game.

� Every subgame perfect equilibrium is a Nash equilibrium, but the con-
verse is not true. Thus, subgame perfection is a re�nement of the Nash
equilibrium concept.

� The idea is to get rid of equilibria that violate sequential rationality prin-
ciple.

� It is instructive to go through the examples that we�ve done so far and
identify subgame perfect equilibria.

2.3 Backward induction in games of perfect information

� In �nite games with perfect information, sub-game perfect equilibria are
found by backward induction:

� Consider the nodes, whose immediate successors are terminal nodes

� Specify that the player who can move in those nodes chooses the action
that leads to the best terminal payo¤ for her (in case of tie, make an
arbitrary selection)

� Then move one step back to the preceding nodes, and specify that the
players who move in those nodes choose the action that leads to the best
terminal payo¤ - taking into account the actions speci�ed for the next
nodes
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� Continue this process until all actions in the game tree have been deter-
mined

� This process is a multi-player generalization of backward induction prin-
ciple of dynamic programming

Theorem 2 A �nite game of perfect information has a subgame perfect Nash
equilibrium in pure strategies.

� The proof is the backward induction argument outlined above

� If optimal actions are unique in every node, then there is a unique sub-
game perfect equilibrium

� Note that the terminal nodes are needed to start backward induction.
Does not work for in�nite games.

� How about chess?

2.4 Example: chain store paradox

� Note that the entry game (predation) discussed at the beginning of the
lecture is a perfect information game

� Could a �rm build a reputation for �ghting if it faces a sequence of en-
trants?

� Chain store paradox considers an incumbent �rm CS that has branches in
cities 1; :::;K.

� In each city there is a potential entrant.

� In period k, entrant of city k enters or not. If it enters, incumbent may
�ght or accomodate.

� Payo¤s for city k are as in original entry game:

Fight if entry Accommodate if entry
Enter �1; 0 1; 2
Stay out 0; 4 0; 4

� Incumbent maximizes the sum of payo¤s over all cities, while each entrant
maximizes pro�ts of that period.

� An entrant only enters if it knows the CS does not �ght.

� Would it pay for CS to build a reputation of toughness if K is very large?

� The paradox is that in SPE, the CS can not build a reputation.

� In the �nal stage, the optimal action of CS is Accomodate, if the entrant
enters.
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� The entrant know this, and thus enters.

� By backward induction, this happens in all stages.

� We �nd that the unique SPE is that all entrants enter and CS always
accomodates.

� To bring reputation e¤ects to life, we would need to introduce incomplete
information (later in this course)

2.5 Example: centipede game

� Centipede game is a striking example of backward induction

� Two players take turns to choose Continute (C) or stop (S)

� The game can continue at most K steps (K can be arbitrarily large)

� In stage 1, player 1 decides between C and S. If he chooses S, he gets 2
and player 2 gets 0. Otherwise game goes to stage 2.

� In stage 2, player 2 decides between C and S. If he chooses S, he gets 3
and player 2 gets 1. Otherwise game goes to stage 3, and so on.

� If i stops in stage k, he gets k + 1, while j gets k � 1 .

� If no player ever stops, both players get K.

� Draw extensive form and solve by backward induction. What is the unique
SPE?

3 Multi-stage games with observed actions

� One restrictive feature of games of perfect information is that only one
player moves at a time

� A somewhat larger class of dynamic games is that of multi-stage games
with observed actions

� Many players may act simultaneously within each stage

� We may summarize each node that begins stage t by history ht that con-
tains all actions taken in previous stages: ht :=

�
a0; a1; :::; at�1

�
� A pure strategy is a sequence of maps sti from histories to actions ati 2
Ai (h

t)

� Payo¤ ui is a function of the terminal history hT+1
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3.1 One-step deviation principle

� Since many players may act simultaneously within a stage, backward in-
duction argument can not be applied as easily as with games of perfect
information

� However, the following principle that extends backward induction idea is
useful:

Theorem 3 In a �nite multi-stage game with observed actions, strategy pro�le
s is a subgame perfect equilibrium if and only if there is no player i and no
strategy s0i that agrees with si except at a single t and h

t, and such that s0i is a
better response to s�i than si conditional on history ht being reached.

� That is: to check if s is a SPE, we only need to check if any player can
improve payo¤s by a one-step deviation

� Note that the result requires a �nite horizon, just like backward induction

� Some applications have an in�nite horizon in which case payo¤s de�ned
as functions of the in�nite sequence of actions

� Importantly, the result carries over to such games under an extra condition
that essentially requires that distant events are relatively unimportant

� In particular, if payo¤s are discounted sums of per period payo¤s, and
payo¤s per period are uniformly bounded, then this condition holds

� The proof of the one-step deviation principle is essentially the principle of
optimality for dynamic programming.

3.2 Example: repeated prisoner�s dilemma

� Consider prisoner�s dilemma with payo¤s:

Cooperate Defect
Cooperate 1; 1 �1; 2
Defect 2;�1 0; 0

� Suppose that two players play the game repeatedly for T periods, with
total payo¤

1� �
1� �T

T�1X
t=0

�tgi
�
at
�
;

where gi gives the per-period payo¤ of action pro�le at as given in the
table above

� Players hence maximize their discounted sum of payo¤s, where the term
1��
1��T is just a normalization factor to make payo¤s of games with di¤erent
horizons easily comparable
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� Suppose �rst that the game is played just once (T = 1). Then (De-
fect,Defect) is the unique Nash equilibrium (Defect is a dominant action)

� Suppose next that T is �nite. Now, subgame perfection requires both
players to defect in the last period, and backward induction implies that
both players always defect.

� Finally, suppose that T is in�nite. Then backward induction cannot be
applied but one-step deviation principle holds (discounting and bounded
payo¤s per period)

� "Both defect every period" is still a SPE

� However, provided that � is high enough, there are now other SPEs too

� By utilizing one-step deviation principle, show that the following is a SPE:
"cooperate in the �rst period and continue cooperating as long as no player
has ever defected. Once one of the players defect, defect in every period
for the rest of the game".

4 Sequential equilibrium

� Recall that a subgame starts with an information set that consists of a
single node

� But in games of imperfect information, there may be few such nodes

� For example, in Bayesian games, where nature chooses a type for each
player, the only subgame is the whole game tree

� In such situations the re�nement of subgame perfect equilibrium has no
bite

� To evaluate sequential rationality in information sets with many nodes,
we must consider the beliefs of the player that chooses her action

� We de�ne a belief system as:

De�nition 4 A belief system � assigns for each information set h a probability
distribution on the nodes of that information set. In other words, �h (x) 2 [0; 1]
gives a probability of node x in information set h, where �x2h�h (x) = 1.

� In words, �h expresses the beliefs of player � (h) on the nodes in h condi-
tional on reaching h:

� Let b denote some behavior strategy
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� Let ax be the path of actions that leads from x0 to x: De�ne

P b(x) =
Y
fb(a)ja 2 axg;

and
P b(h) =

X
fP b(x)jx 2 hg:

� Let ui(bj�h) be the expected utility of player i given that information
set h is reached, given that player i�s beliefs with respect to the nodes
x 2 h is given by �h, and given that the strategy pro�le b is played on all
information sets that follow h

� Sequential rationality can now be formally stated:

De�nition 5 behavior strategy pro�le b is sequentially rational (given belief sys-
tem �) if for all i and all h such that i moves at h;

ui(bj�h) � ui((b0i; b�i)j�h) for each behavior strategy b0i of i:

� In other words, sequential rationality means expected utility maximization
at each h given the beliefs at h and given that all future decisions are taken
according to b:

� So far we have said nothing about how beliefs are formed

� To connect beliefs to strategies, we require that they are obtained from
the strategies using Bayes�rule:

�h (x) =
P b (x)

P b (h)
; whenever P b (h) > 0:

� We have:

De�nition 6 A Perfect Bayesian Equilibrium (PBE) is a pair (b; �) such that
b is sequentially rational given � and � is derived from b using Bayes� rule
whenever applicable.

� What to do with o¤-equilibrium pats, i.e. information sets such that
P b (h) = 0?

� The version of Perfect Bayesian Equilibrium de�ned above gives full free-
dom for choosing those beliefs (this version is called weak PBE in MWG)

� Why do o¤-equilibrium beliefs matter? Because they may induce o¤-
equilibrium actions that in turn in�uence behavior on the equilibrium
path

� To make the concept of PBE more useful in applications, additional restric-
tions for o¤-equilibrium beliefs have been introduced (see e.g. Fudenberg-
Tirole section 8.2, or MWG section 13.C), but this is not a general cure
as it may lead to non-existence problems
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� The solution concept, introduced in Kreps and Wilson (1982, Economet-
rica), called sequential equilibrium derives beliefs at o¤-equilibrium infor-
mation sets as limits from strategies that put a positive but small proba-
bility on all actions (so that all information sets are reached with positive
probability):

De�nition 7 A pair (b; �) is a Sequential Equilibrium if:

1) Sequential Rationality: b is sequentially rational given �

2) Consistency of beliefs: there exists a sequence of pairs (bn; �n)! (b; �);
such that for all n; bn puts a positive probability on all availabe actions,
and for any h and any x 2 h; �nh(x) = P b

n

(x)=P b
n

(h):

� Every �nite extensive form game with perfect recall has a sequential equi-
librium

� In practice, PBE is a popular solution concept in applications

� Sequential equilibrium is important because:

�Existence is guaranteed (in �nite games with perfect recall)

�Every sequential equilibrium is at the same time a (weak) perfect
Bayesian equilibrium

�Also, if (b; �) is a sequential equibrium, then at the same time b is
a sub-game perfect equilibrium (this does not necessarily hold for a
weak PBE).

� A related concept is called extensive form trembling-hand perfect Nash
equilibrium, which also always exists in �nite games (see MWG Appendix
B to Ch. 9). An extensive form trembling-hand perfect equilibrium is a
sequential equilibrium, but the converse is not necessarily true.
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