FDPE Microeconomics 3: Game Theory

Spring 2018

Lecture notes 2: Sequential rationality in dynamic games
Pauli Murto

1.1

Outline

We now move to dynamic games

We focus especially on Nash equilibrium refinements induced by sequential
rationality: sub-game perfect equilibrium and sequential equilibrium

Material: MWG Chapter 9

Other relevant sources: Fudenberg-Tirole Ch. 3-4, 8.3, Osborne-Rubinstein
Ch. 6-7, 12, Myerson Ch. 4

Some motivating examples:

Example: predation

An entrant considers entry into an industry with a current incumbent firm
Entry costs 1 unit

Monopoly profit in the industry is 4

If entry takes place, the monopolist can either accomodate or fight

Accommodation splits monopoly profits, whereas fighting gives zero profit
to both firms

Will entrant enter, and if so, will incumbent fight or accomodate?
Normal form representation of the game:

Fight if entry ~ Accommodate if entry
Enter -1,0 1,2
Stay out 0,4 0,4

There are two Nash equilibria: (Enter, Accommodate) and (Stay out, Fight
if entry)

Is one of the two equilibria more plausible?
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Example: quality game

A producer can produce an indivisible good, and choose either high or low
quality

Producing high quality costs 1 and bad quality 0

Buyers values high quality at 3 and bad quality at 1

For simplicity, suppose that good must be sold at fixed price 2
Which quality will be produced and will the buyer buy?
Normal form representation of the game:

High quality Low quality
Buy 1,1 -1,2
Do not buy 0,—1 0,0

Only one Nash equilibrium (Do not buy, Low)
What if seller moves first?
What if buyer moves first?

What if seller moves first, but quality is unobservable?

Example: Stackelberg vs. Cournot
Consider the quantity setting duopoly with profit functions

i (¢i,95) = ¢i(1 — q1 — q2), for all i =1,2.

Suppose the players set their quantities simultaneously (Cournot model).
The unique Nash equilibrium is:

Lo (11
(quq )_ (31?’)7
which gives payoffs

11y _ LIy _ 2\l _1
T\33)~™\33)7 3379

What if player 1 moves first? (Stackelberg model)

After observing the quantity choice of player 1, player 2 chooses his quan-
tity.



e Given the observed ¢, firm 2 chooses ¢2. Optimal choice is
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e Player 1 should then choose:

1 —
maxuy (q1, BRz2 (q1)) = (1 —q - ql) @ =

2

e This leads to 1 1
= — f— B = —
©=5 @ Ra(q1) 1

with payoffs
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1.4 Example: matching pennies
Head Tail
Head | 1,-1 | —1,1
Tail | —1,1 | 1,1

(1 —Q1)q1.
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e Nash equilibrium, where both players mix with 1/2 probabilities

e What if player 1 moves first?

e What if player 1 moves first, but choice is unobservable?

1.5 Discussion

e These examples illustrate that the order of moves is crucial

e Moving first may help (commitment to an action)

e Moving first may also hurt (matching pennies)

e The normal form representation misses the dynamic nature of events, so

we need to utilize extensive form representation

e The key principle is sequential rationality, which means that a player
should always use a continuation strategy that is optimal given the current

situation

e For example, once entrant has entered, the incumbent should act optimally

given this fact (accommodate)

e This will lead us to refinements of Nash equilibrium, in particular subgame

perfect equilibrium (SPE) and sequential equilibrium
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Subgame perfect equilibrium

Subgame

e Consider an extensive form game with perfect recall

e A subgame is a subset of the original game-tree that inherits information

2.2

sets and payoffs from the original game, and which meets the following
requirements:

1. There is a single node such that all the other nodes are successors of
this node (that is, there is a single initial node to the subgame)

2. Whenever a node belongs to the subgame, then all of its successor
nodes must also belong to the subgame.

3. Whenever a node belongs to the subgame, then all nodes in the same
information set must also belong to the subgame.

Subgame perfect equilibrium

Definition 1 A strategy profile o of an extensive form game is a subgame per-
fect Nash equilibrium (SPE) if it induces a Nash equilibrium in every subgame
of the original game.

e Every subgame perfect equilibrium is a Nash equilibrium, but the con-
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verse is not true. Thus, subgame perfection is a refinement of the Nash
equilibrium concept.

The idea is to get rid of equilibria that violate sequential rationality prin-
ciple.

It is instructive to go through the examples that we’ve done so far and
identify subgame perfect equilibria.

Backward induction in games of perfect information

In finite games with perfect information, sub-game perfect equilibria are
found by backward induction:

Consider the nodes, whose immediate successors are terminal nodes

Specify that the player who can move in those nodes chooses the action
that leads to the best terminal payoff for her (in case of tie, make an
arbitrary selection)

Then move one step back to the preceding nodes, and specify that the
players who move in those nodes choose the action that leads to the best
terminal payoff - taking into account the actions specified for the next
nodes



Continue this process until all actions in the game tree have been deter-
mined

This process is a multi-player generalization of backward induction prin-
ciple of dynamic programming

Theorem 2 A finite game of perfect information has a subgame perfect Nash
equiltbrium in pure strategies.
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The proof is the backward induction argument outlined above

If optimal actions are unique in every node, then there is a unique sub-
game perfect equilibrium

Note that the terminal nodes are needed to start backward induction.
Does not work for infinite games.

How about chess?

Example: chain store paradox

Note that the entry game (predation) discussed at the beginning of the
lecture is a perfect information game

Could a firm build a reputation for fighting if it faces a sequence of en-
trants?

Chain store paradox considers an incumbent firm CS that has branches in
cities 1, ..., K.

In each city there is a potential entrant.

In period k, entrant of city k enters or not. If it enters, incumbent may
fight or accomodate.

Payoffs for city k£ are as in original entry game:

Fight if entry ~ Accommodate if entry
Enter -1,0 1,2
Stay out 0,4 0,4

Incumbent maximizes the sum of payoffs over all cities, while each entrant
maximizes profits of that period.

An entrant only enters if it knows the CS does not fight.
Would it pay for CS to build a reputation of toughness if K is very large?
The paradox is that in SPE, the CS can not build a reputation.

In the final stage, the optimal action of CS is Accomodate, if the entrant
enters.
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The entrant know this, and thus enters.
By backward induction, this happens in all stages.

We find that the unique SPE is that all entrants enter and CS always
accomodates.

To bring reputation effects to life, we would need to introduce incomplete
information (later in this course)
Example: centipede game
Centipede game is a striking example of backward induction
Two players take turns to choose Continute (C') or stop (5)
The game can continue at most K steps (K can be arbitrarily large)

In stage 1, player 1 decides between C' and S. If he chooses S, he gets 2
and player 2 gets 0. Otherwise game goes to stage 2.

In stage 2, player 2 decides between C and S. If he chooses S, he gets 3
and player 2 gets 1. Otherwise game goes to stage 3, and so on.

If 7 stops in stage k, he gets k + 1, while j gets kK — 1.
If no player ever stops, both players get K.

Draw extensive form and solve by backward induction. What is the unique
SPE?

Multi-stage games with observed actions

One restrictive feature of games of perfect information is that only one
player moves at a time

A somewhat larger class of dynamic games is that of multi-stage games
with observed actions

Many players may act simultaneously within each stage

We may summarize each node that begins stage ¢ by history h? that con-

tains all actions taken in previous stages: ht := (ao, al, ..., at_l)

A pure strategy is a sequence of maps s! from histories to actions a! €

A; (h*)

Payoff u; is a function of the terminal history h7*!
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One-step deviation principle

Since many players may act simultaneously within a stage, backward in-
duction argument can not be applied as easily as with games of perfect
information

However, the following principle that extends backward induction idea is
useful:

Theorem 3 In a finite multi-stage game with observed actions, strategy profile
s is a subgame perfect equilibrium if and only if there is no player ¢ and no
strategy s, that agrees with s; except at a single t and h', and such that s, is a
better response to s_; than s; conditional on history ht being reached.
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That is: to check if s is a SPE, we only need to check if any player can
improve payoffs by a one-step deviation

Note that the result requires a finite horizon, just like backward induction

Some applications have an infinite horizon in which case payoffs defined
as functions of the infinite sequence of actions

Importantly, the result carries over to such games under an extra condition
that essentially requires that distant events are relatively unimportant

In particular, if payoffs are discounted sums of per period payoffs, and
payoffs per period are uniformly bounded, then this condition holds

The proof of the one-step deviation principle is essentially the principle of
optimality for dynamic programming.
Example: repeated prisoner’s dilemma

Consider prisoner’s dilemma with payoffs:

Cooperate  Defect
Cooperate 1,1 -1,2
Defect 2,—1 0,0

Suppose that two players play the game repeatedly for T' periods, with
total payoff

1-6 T-1
t
1_6T Z5gi(at)’
t=0

where g; gives the per-period payoff of action profile a* as given in the
table above

Players hence maximize their discounted sum of payoffs, where the term

11_*5‘; is just a normalization factor to make payoffs of games with different

horizons easily comparable




Suppose first that the game is played just once (T = 1). Then (De-
fect,Defect) is the unique Nash equilibrium (Defect is a dominant action)

Suppose next that T is finite. Now, subgame perfection requires both
players to defect in the last period, and backward induction implies that
both players always defect.

Finally, suppose that T is infinite. Then backward induction cannot be
applied but one-step deviation principle holds (discounting and bounded
payoffs per period)

"Both defect every period" is still a SPE
However, provided that ¢ is high enough, there are now other SPEs too

By utilizing one-step deviation principle, show that the following is a SPE:
"cooperate in the first period and continue cooperating as long as no player
has ever defected. Once one of the players defect, defect in every period
for the rest of the game".

Sequential equilibrium

Recall that a subgame starts with an information set that consists of a
single node

But in games of imperfect information, there may be few such nodes

For example, in Bayesian games, where nature chooses a type for each
player, the only subgame is the whole game tree

In such situations the refinement of subgame perfect equilibrium has no
bite

To evaluate sequential rationality in information sets with many nodes,
we must consider the beliefs of the player that chooses her action

We define a belief system as:

Definition 4 A belief system p assigns for each information set h a probability
distribution on the nodes of that information set. In other words, u" (x) € [0,1]
gives a probability of node x in information set h, where Ypepu® (z) = 1.

In words, " expresses the beliefs of player ¢ (h) on the nodes in h condi-
tional on reaching h.

Let b denote some behavior strategy



o Let a® be the path of actions that leads from z° to z. Define

H{b )la € a®}

= {P'(x)|z € h}.

o Let u;(blu") be the expected utility of player i given that information
set h is reached, given that player i’s beliefs with respect to the nodes
x € h is given by p", and given that the strategy profile b is played on all
information sets that follow h

and

e Sequential rationality can now be formally stated:

Definition 5 behavior strategy profile b is sequentially rational (given belief sys-
tem p) if for all i and all h such that i moves at h,

ws (blp™) > wi (b, b_3)|u") for each behavior strategy b of i.

e In other words, sequential rationality means expected utility maximization
at each h given the beliefs at i and given that all future decisions are taken
according to b.

e So far we have said nothing about how beliefs are formed

e To connect beliefs to strategies, we require that they are obtained from
the strategies using Bayes’ rule:

Pb
(x)’ whenever PP (h) > 0.

W (@) = By

o We have:

Definition 6 A Perfect Bayesian Equilibrium (PBE) is a pair (b, i) such that
b is sequentially rational given p and p is derived from b using Bayes’ rule
whenever applicable.

e What to do with off-equilibrium pats, i.e. information sets such that
PY(h) =0?

e The version of Perfect Bayesian Equilibrium defined above gives full free-
dom for choosing those beliefs (this version is called weak PBE in MWG)

e Why do off-equilibrium beliefs matter? Because they may induce off-
equilibrium actions that in turn influence behavior on the equilibrium
path

e To make the concept of PBE more useful in applications, additional restric-
tions for off-equilibrium beliefs have been introduced (see e.g. Fudenberg-
Tirole section 8.2, or MWG section 13.C), but this is not a general cure
as it may lead to non-existence problems



e The solution concept, introduced in Kreps and Wilson (1982, Economet-
rica), called sequential equilibrium derives beliefs at off-equilibrium infor-
mation sets as limits from strategies that put a positive but small proba-
bility on all actions (so that all information sets are reached with positive
probability):

Definition 7 A pair (b, 1) is a Sequential Equilibrium if:
1) Sequential Rationality: b is sequentially rational given

2) Consistency of beliefs: there exists a sequence of pairs (b™, u™) — (b, p),
such that for all n, b™ puts a positive probability on all availabe actions,
and for any h and any x € h, u}(z) = P*" (2)/P*" (h).

e Every finite extensive form game with perfect recall has a sequential equi-
librium

e In practice, PBE is a popular solution concept in applications

e Sequential equilibrium is important because:

— Existence is guaranteed (in finite games with perfect recall)

— Every sequential equilibrium is at the same time a (weak) perfect
Bayesian equilibrium

— Also, if (b, 1) is a sequential equibrium, then at the same time b is
a sub-game perfect equilibrium (this does not necessarily hold for a
weak PBE).

e A related concept is called extensive form trembling-hand perfect Nash
equilibrium, which also always exists in finite games (see MWG Appendix
B to Ch. 9). An extensive form trembling-hand perfect equilibrium is a
sequential equilibrium, but the converse is not necessarily true.
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