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1.1

We consider first a well known application of perfect information games:
alternating offers bargaining

Then we consider repeated games (with perfect monitoring)

Both models fall into the category of multi-stage games with observed
actions, so that we can use sub-game perfect equilibrium as the solution
concept

For more on bargaining games, see e.g. Osborne and Rubinstein Ch. 7,
Fudenberg and Tirole Ch. 4, Myerson Ch. 8

For more on repeated games, see e.g. Fudenberg and Tirole Ch. 5, Os-
borne and Rubinstein Ch. 8, Myerson Ch. 7, Maschler, Solan, and Zamir
Ch. 13

A particularly good and exhaustive source on repeated games is the book
Mailath and Samuelson: Repeated Games and Reputations, 2006, Oxford
University Press.

Alternating offers bargaining

One stage game
Start with the simplest case: One period ultimatum game
Two players share a pie of size 1.
Player 1 suggests a division z € (0, 1).
Player 2 accepts or rejects.

In the former case, 1 gets = and 2 gets 1 — x. In the latter case, both get
0.

Given any z € (0,1), the strategy profile {a; = z, a2 = (accept iff a; < z)}
is a Nash equilibrium. So, there are infinitely many Nash equilibria.

But once player 1 has made an offer, the optimal strategy for 2 is to accept
any offer a3 < 1 and he is indifferent with accepting offer a; = 1.

What can you say about subgame perfect equilibria?
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Two stages

Suppose next that after 2 rejects an offer, the roles are changed
2 makes an offer x for player 1 and if accepted, she gets 1 — x for herself
What is the SPE of this two-round bargaining game?

What if players are impatient and payoff in stage 2 is only worth §; < 1
times the payoff in stage 1 for player <.

What is the SPE of this game?

Generalization to longer horizons: Alternating offers
bargaining

The player that rejects an offer makes a counteroffer
Players discount every round of delay by factor d¢;, i = 1,2
If there are T periods, we can solve for a SPE by backward induction.

Suppose we are at the last period, and player 1 makes the offer. Then he
should demand the whole pie z = 1 and player 2 should accept.

Suppose we are at period T'— 1, where player 2 makes the offer. He knows
that if his offer is not accepted, in the next period player 1 will demand
everything. So he should offer the least amount that player 1 would accept,
that is z = 4.

Similarly, at period T — 2 player 1 should offer division z = 1—4d2 (1 — d1),
and so on

Can you show that as T" — oo, then the player ¢ who starts offers

1-4;
T 150,

in the first period, and this offer is accepted?
Note that the more patient player is stronger.

What if there is infinite horizon? With no end point (i.e. all rejected offers
are followed by a new proposal), backward induction is not possible

Use the concept of SPE

Notice that the subgame starting after two rejections looks exactly the
same as the original game

Therefore the set of SPE also is the same for the two games
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The famous result proved by Rubinstein (1982) shows that the infinite
horizon game also has a unique equilibrium

Theorem 1 A subgame perfect equilibrium in the infinite horizon alter-
nating offer bargaining game results in immediate acceptance. The unique
subgame perfect equilibrium payoff for player 1 is

1—4d5
V=
1—9102
Proof of Rubinstein’s result:
The part on immediate acceptance is easy and left as an exercise.

Calculate first the largest subgame perfect equilibrium payoff @ for player
1 in the game.

Denote by v2(2) the continuation payoff to player 2 following a rejection
in T'= 1. The largest payoff for 1 consistent with this continuation payoff
to 2 is:

1-— (52’1}2 (2)
Hence the maximal payoff to 1 results from the minimal vy (2).

We also know that
U2(2) =1- 51’01(3)

Hence v2(2) is minimized when v1(3) is maximized.

Notice next that the game starting after two rejections is the same game
as the original one. Hence 7 is also the maximal value for v (3).

Hence combining the equations, we have

v=1-— (52(1 — 51@)
And hence
1— 92
1—6102°
Denote by v the smallest subgame perfect equilibrium payoff to 1. The

same argument goes through exchanging everywhere words minimal and
maximal. Hence we have:

v =

v=1-0d2(1—01v)

and

1— 49
1—6162°

y:

And thus the result is proved.
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Comments:
If 61 = 03 = 6 — 1, then the SPE payoff converges to 50-50 split
This is a theory that explains bargaining power by patience
Cannot explain why there is often delays in bargaining
Hard to generalize to more than two players
Must have perfectly divisible offers
Sensitive to bargaining protocol

This model is based on Rubinstein (1982), "Perfect equilibrium in a bar-
gaining model", Econometrica 50.

Repeated games

An important class of dynamic games

We only give some basic results and intuitions, and restrict here to the
case of perfect monitoring (i.e. both players observe perfectly each others’
previous actions)

An extensive text book treatment: Mailath and Samuelson (2006), "Re-
peated games and reputations: long-run relationships", Oxford University
Press

In these games, the same "stage game" is repeated over and over again

Player’s payoff is most typically the discounted sum of the payoffs across
stages

The underlying idea: players may punish other players’ deviations from
nice behavior by their future play

This may discipline behavior in the current period

As a result, more cooperative behavior is possible

Stage game
A stage game is a finite I-player simultaneous-move game
Denote by A;, i = 1,...,I the action spaces within a stage
Stage-game payoff given by
gi: A— R

In an infinite horizon repeated game, the same stage game is repeated
forever
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Strategies and payoffs
Players observe each other’s actions in previous periods
Therefore, this is a multi-stage game with observed actions
Denote by a' := (a!,...,a}) the action profile in stage ¢

As before, history at stage t, ' := (a°,...,a’"') € H', summarizes the
actions taken in previous stages

A pure strategy is a sequence of maps s! from histories to actions

A mixed (behavior) strategy o; is a sequence of maps from histories to
probability distributions over actions:

ol i H' — A(4).

The payoffs are (normalized) discounted sum of stage payoffs:

ui (0) =B (1-0) Y _d'gi (o (1)),

where expectation is taken over possible infinite histories generated by o
The term (1 — §) just normalizes payoffs to "per-period" units
Note that every period begins a proper subgame

For any o and h!, we can compute the "continuation payoff" at the current
stage:

By (1-0) 67gi (07 (h7)).

A preliminary result:

Proposition 2 Ifa* = (af,...,a}) € A(S1) x...x A (Sr) is a Nash equilibrium
of the stage game, then the strategy profile

ot (ht) =af forallicI, "€ H', t=0,1,...

18 a sub-game perfect equilibrium of the repeated game. Moreover, if the stage
game has m Nash equilibria (al,...,am), then for any map j(t) from time
periods to {1,...,m}, there is a subgame perfect equilibrium

ot () = a®),

i.e. every player plays according to the stage-game equilibrium oY) in stage t.

Check that you understand why these strategies are sub-game perfect
equilibria of the repeated game

These equilibria are not very interesting. The point in analyzing repeated
games is, of course, that more interesting equilibria exist too
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Folk theorems
What kind of payoffs can be supported in equilibrium?

The main insight of the so-called folk theorems (various versions apply un-
der different conditions) is that virtually any "feasible" and "individually
rational" payoff profile can be enforced in an equilibrium, provided that
discounting is sufficiently mild

Individually rational payoffs:

What is the lowest payoff that player i’s opponents can impose on ¢?

Let

v, '= minmax g; (o, ®_;) ,
[0 2y (e 77

where «; € A (Sz) and a_; € Xj#iA (Sj)

It is easy to prove the following:

Proposition 3 Player i’s payoff is at least v; in any Nash equilibrium of the
repeated game, regardless of the level of the discount factor.

Hence, we call {(v1,...,v1) : v; > v, for all i} the set of individually ratio-
nal payoffs.

Feasible payoffs:

We want to identify the set of all payoff vectors that result from some
feasible strategy profile

With independent strategies, feasible payoff set is not necessarily convex
(e.g. in battle of sexes, payoff (£,2) can only be attained by correlated
strategies)

Also, with standard mixed strategies, deviations are not perfectly detected
(only actions observed, not the actual strategies)

But in repeated games, convex combinations can be attained by time-
varying strategies (if discount factor is large)

To sidestep this technical issue, we assume here that players can condition
their actions on the outcome of a public randomization device in each
period

This allows correlated strategies, where deviations are publicly detected
Then, the set of feasible payoffs is given by
V =co{v:3Ja € A such that g (a) = v},

where co denotes convex hull operator



Having defined individually rational and feasible payoffs, we may state the
simplest Folk theorem:

Theorem 4 For every feasible and strictly individually rational payoff vector v

(i.e.

an element of {v €V :v; > v, for all i}), there exists a § < 1 such that

for all 6 € (8,1) there is a Nash equilibrium of the repeated game with payoffs v.

The proof idea is simple and important: construct strategies where all the
players play the stage-game strategies that give payoffs v as long as no
player has deviated from this strategy. As soon as one player deviates,
other players turn to punishment strategies that "minmax" the deviating
player forever after.

If the players are sufficiently pationt, any finite one-period gain from de-
viating is outweighed by the loss caused by the punishment, therefore
strategies are best-responses (check the details).

The problem with this theorem is that the Nash equilibrium constructed
here is not necessarily sub-game perfect

The reason is that punishment can be very costly, so once a deviation has
occurred, it may not be optimal to carry out the punishment

However, if the minmax payoff profile itself is a stage-game Nash equilib-
rium, then the equilibrium is sub-game perfect

This is the case in repeated Prisoner’s dilemma

The question arises: using less costly punishements, can we generalize the
conclusion of the theorem to sub-game perfect equilibria?

Naturally, we can use some low-payoff stage-game Nash equilibrium profile
as a punishment:

Theorem 5 Let o be a stage-game Nash equilibrium with payoff profile e.
Then, for any feasible payoff vector with v; > e; for every i, there is a § < 1
such that for all 6 € (8,1) there is a sub-game perfect Nash equilibrium of the
repeated game with payoffs v.

The proof is easy and uses the same idea as in above theorem, except
here one uses Nash equilibrium strategy profile a* as the punishment to
a deviation

Because the play continues according to a Nash equilibrium even after
deviation, this is a sub-game perfect equilibrium

Note that the conclusion of Theorem 5 is weaker than in Theorem 4 in
the sense that it only covers payoff profiles where each player gets more
than in some stage-game Nash equilibrium
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Is it possible to extend the result to cover all individually rational and
feasible payoff profiles?

Fudenberg and Maskin (1986) show that the answer is positive: in fact,
for any v € V such that v; > v, for all ¢, there is a SPE with payoffs v
given that § is high enough (given an additional dimensionality condition
on the payoff set: the dimension of the set V' equals the number of players)

See Fudenberg-Tirole book or the original article for the construction

Structure of equilibria

The various folk theorems show that repeated interaction makes coopera-
tion feasible as 6 — 1

At the same time, they show that the standard equilibrium concepts do
little to predict actual play in repated games: the proofs use just one
strategy profile that works if § is large enough

The set of possible equilibria is large. Is there a systematic way to char-
acterize behavior in equilibrium for a given fixed 67

What is the most effective way to punish deviations?

At the outset, the problem is complicated because the set of potential
strategy profiles is very large (what to do after all possible deviations...)

Abreu (1988) shows that all subgame perfect equilibrium paths can be
generated by simple strategy profiles

"Simple" means that these profiles consists of I+ 1 equilibrium paths: the
actual play path and I punishment paths.

A path is just a sequence of action profiles

This is a relatively simple object - does not contain description of players’
behavior after deviations

The idea is that a deviation is punished by switching to the worst subgame
perfect equilibrium path for the deviator:

— Take a path as a candidate for a subgame perfect equilibrium path.
We want to define a simple strategy profile that is a SPE and supports
this path.

— Find the worst sub-game perfect equilibrium path for each player.
These are used as "punishment" paths.

— Define players’ behavior: follow the default path as long as no player
deviates.

— If one player deviates, switch to the punishment path of the deviator.
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— If there is another deviation from the punishment srategy, again
switch to the equilibrium that punishes deviator.

— By one step deviation principle, this is a sub-game perfect equilibrium
that replicates the original equilibrium path (recall that one-step de-
viation principle works for infinite horizon games with discounting)

— Note that once all players follow these strategies, there is no deviation
and hence punishment are not used along equilibrium path

For a formalization of this, see Abreu (1988): "On the theory of infinitely
repeated games with discounting", Econometrica 56 (2).

Example: oligopoly

Finding the worst possible SPE for each player, as the construction above
requires, may be difficult

However, for symmetric games, finding the worst strongly symmetric pure-
strategy equilibrium is much easier

A strategy profile is strongly symmetric, if for all histories h! and all
players ¢ and j, we have s; (h') = s, (h')

Following the same idea as in Abreu (1988), we can construct the best
strongly symmetric equilibrium by finding the worst punishment paths in
the class of strongly symmetric equilibria

This works nicely in games where arbitrarily low stage-game payoffs may
be induced by symmetric strategies

As an example, consider a quantity setting oligopoly model (with contin-
uum action spaces)

This originates from Abreu (1986), "Extremal equilibria of oligopolistic
supergames", Journal of Economic Theory (here adapted from Mailath-
Samuelson book)

There are n firms, producing homogeneous output with marginal cost
c<1

Firms maximize discounted sum of stage payoffs with discount factor §

Given outputs q1, ..., ¢, stage payoff of firm ¢ is

n
Ui (@1, - @n) = i | max 1—qu,0 —c
j=1



The stage game has a unique symmetric Nash equilibrium

1—c¢
N _ _ N
K T n+41°

with stage payoffs

1—¢c\?

The symmetric output that maximizes joint profits is

m

q;

m

1-c
= ::q

2n

o 1 1=c\?

Note that in this model, one sub-game perfect equilibrium is trivially
s; (h') = ¢ for all i and A’

giving payoffs

Therefore, if § is high enough, optimal outputs are achieved by Nash-
reversion strategies: play ¢ as long as all the players do so, otherwise
revert to playing ¢ forever

However, cooperation at lower discount rates is possible with more effec-
tive punishments as follows

Let 1 (q) denote a payoff with symmetric output profile ¢; = ¢ for i =
1,...,n:
1 (q) = g (max {1 —nq,0} —c)

Let u? (q) denote maximal "deviation payoff" for i when others produce
q:

n(q) = max 1 (q1,4; -+ 9)

Tl-(m-1)g—¢c?ifl-(n-1)g—c>0
0 otherwise

Note that p(¢) can be made arbitrarily low with high enough ¢, allowing
severe punishments

Also, p? (q) is decreasing in ¢ and u? (¢) = 0 for ¢ high enough

Let v* denote the worst payoff achievable in strongly symmetric equilib-
rium (can be shown as part of the construction that a strategy profile
achieving this minimum payoff exists)

10



Given this, the best payoff that can be achieved in SPE is obtained by
every player choosing ¢* given by

¢ = argmax i (q) (1)

subject to
(@) = (1=38)u? (q) + 60", (2)

where the inequality constraint ensures that playinng ¢* (now and forever)
is better than choosing the best deviation and obaining the worst SPE
payoff from that point on

How do we find v*?

The basic insight is that we can obtain v* by using a "carrot-and-stick"
punishment strategy with some "stick" output ¢°* and "carrot" output ¢°

According to such strategy, choose output ¢° in the first period and there-
after play ¢° in every period, unless any player deviates from this plan,
which causes this prescription to be repeated from the beginning

Intuitively: ¢° leads to painfully low profits (stick), but it has to be suffered
once in order for the play to resume to ¢°

To be a SPE, such a strategy must satisfy:

1. Players don’t have an incentive to deviate from "carrot":

(g = (=08 u*(¢°) +0[(1—6)n(q®) +ou(q)] or

pt(q) —ple?) < 5(u(q) —p(g”) (3)
2. Players dont’ have an incentive to deviate from "stick":
p(q°) < (1 =0) p(q®) +6p(a°) (4)

To find the optimal "carrot-and-stick" punishment, we can proceed as
follows:

First, guess that joint optimum ¢" can be supported in SPE. If that is
the case, then let ¢¢ = ¢"*, and let ¢° be the worst "stick" that the players
still want to carry out (knowning that this restores play to ¢™), ie solve
q° from

ph(q®) = (1= 06) pu(q®) + 6 (q™).

If
w (g™ — (™) <6 (n(g™) — plq®)),

then no player indeed wants to deviate from ¢™, and this carrot-and-stick
strategy works giving:

v =(1—=0)pu(qg®) +du(q™)

11



However, if
p (g™ — (™) > 6 (n(g™) — pu(q®),

then the worst possible punishment is not severe enough, and ¢ cannot
be implemented

Then we want to find the lowest ¢ > ¢ for which there is some ¢° such
that (3) and (4) hold

This task is accomplished by finding ¢¢ and ¢® that solve those two in-
equalities as "=" (both "incentive constraints" bind)

Note that this algorithm gives us the solution to (1) - (2): ¢* = ¢¢ and
vt = (1=0)p(q") +n(q")

Is something lost by restricting to strongly symmetric punishment strate-
gies? If v* = 0, then clearly there cannot be any better asymmetric pun-
ishments (every player guarantees zero by producing zero in every period).
Then restricting to strongly symmetric strategies is without loss

However, if v* > 0, then one could improve by adopting asymmetric pun-
ishment strategies

It can be shown that ¢* and v* are decreasing in discount factor J, and
corresponding stick output ¢° is increasing in §

That is, higher discount factor improves the achievable stage-payoff by
making feasible punishments more severe

For a high enough discount factor, we have v* = 0 and ¢* = ¢™
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