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� We consider �rst a well known application of perfect information games:
alternating o¤ers bargaining

� Then we consider repeated games (with perfect monitoring)

� Both models fall into the category of multi-stage games with observed
actions, so that we can use sub-game perfect equilibrium as the solution
concept

� For more on bargaining games, see e.g. Osborne and Rubinstein Ch. 7,
Fudenberg and Tirole Ch. 4, Myerson Ch. 8

� For more on repeated games, see e.g. Fudenberg and Tirole Ch. 5, Os-
borne and Rubinstein Ch. 8, Myerson Ch. 7, Maschler, Solan, and Zamir
Ch. 13

� A particularly good and exhaustive source on repeated games is the book
Mailath and Samuelson: Repeated Games and Reputations, 2006, Oxford
University Press.

1 Alternating o¤ers bargaining

1.1 One stage game

� Start with the simplest case: One period ultimatum game

� Two players share a pie of size 1:

� Player 1 suggests a division x 2 (0; 1).

� Player 2 accepts or rejects.

� In the former case, 1 gets x and 2 gets 1� x: In the latter case, both get
0:

� Given any x 2 (0; 1), the strategy pro�le fa1 = x; a2 = (accept i¤ a1 � x)g
is a Nash equilibrium. So, there are in�nitely many Nash equilibria.

� But once player 1 has made an o¤er, the optimal strategy for 2 is to accept
any o¤er a1 < 1 and he is indi¤erent with accepting o¤er a1 = 1:

� What can you say about subgame perfect equilibria?
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1.2 Two stages

� Suppose next that after 2 rejects an o¤er, the roles are changed

� 2 makes an o¤er x for player 1 and if accepted, she gets 1� x for herself

� What is the SPE of this two-round bargaining game?

� What if players are impatient and payo¤ in stage 2 is only worth �i < 1
times the payo¤ in stage 1 for player i.

� What is the SPE of this game?

1.3 Generalization to longer horizons: Alternating o¤ers
bargaining

� The player that rejects an o¤er makes a countero¤er

� Players discount every round of delay by factor �i, i = 1; 2

� If there are T periods, we can solve for a SPE by backward induction.

� Suppose we are at the last period, and player 1 makes the o¤er. Then he
should demand the whole pie x = 1 and player 2 should accept.

� Suppose we are at period T �1, where player 2 makes the o¤er. He knows
that if his o¤er is not accepted, in the next period player 1 will demand
everything. So he should o¤er the least amount that player 1 would accept,
that is x = �1.

� Similarly, at period T �2 player 1 should o¤er division x = 1��2 (1� �1),
and so on

� Can you show that as T !1, then the player i who starts o¤ers

x =
1� �j
1� �i�j

in the �rst period, and this o¤er is accepted?

� Note that the more patient player is stronger.

� What if there is in�nite horizon? With no end point (i.e. all rejected o¤ers
are followed by a new proposal), backward induction is not possible

� Use the concept of SPE

� Notice that the subgame starting after two rejections looks exactly the
same as the original game

� Therefore the set of SPE also is the same for the two games
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� The famous result proved by Rubinstein (1982) shows that the in�nite
horizon game also has a unique equilibrium

Theorem 1 A subgame perfect equilibrium in the in�nite horizon alter-
nating o¤er bargaining game results in immediate acceptance. The unique
subgame perfect equilibrium payo¤ for player 1 is

v =
1� �2
1� �1�2

:

1.4 Proof of Rubinstein�s result:

� The part on immediate acceptance is easy and left as an exercise.

� Calculate �rst the largest subgame perfect equilibrium payo¤ v for player
1 in the game.

� Denote by v2(2) the continuation payo¤ to player 2 following a rejection
in T = 1. The largest payo¤ for 1 consistent with this continuation payo¤
to 2 is:

1� �2v2(2)

� Hence the maximal payo¤ to 1 results from the minimal v2(2).

� We also know that
v2(2) = 1� �1v1(3)

� Hence v2(2) is minimized when v1(3) is maximized.

� Notice next that the game starting after two rejections is the same game
as the original one. Hence v is also the maximal value for v1(3).

� Hence combining the equations, we have

v = 1� �2(1� �1v)

And hence

v =
1� �2
1� �1�2

:

� Denote by v the smallest subgame perfect equilibrium payo¤ to 1. The
same argument goes through exchanging everywhere words minimal and
maximal. Hence we have:

v = 1� �2(1� �1v)

and

v =
1� �2
1� �1�2

:

And thus the result is proved.
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1.5 Comments:

� If �1 = �2 = � ! 1, then the SPE payo¤ converges to 50-50 split

� This is a theory that explains bargaining power by patience

� Cannot explain why there is often delays in bargaining

� Hard to generalize to more than two players

� Must have perfectly divisible o¤ers

� Sensitive to bargaining protocol

� This model is based on Rubinstein (1982), "Perfect equilibrium in a bar-
gaining model", Econometrica 50.

2 Repeated games

� An important class of dynamic games

� We only give some basic results and intuitions, and restrict here to the
case of perfect monitoring (i.e. both players observe perfectly each others�
previous actions)

� An extensive text book treatment: Mailath and Samuelson (2006), "Re-
peated games and reputations: long-run relationships", Oxford University
Press

� In these games, the same "stage game" is repeated over and over again

� Player�s payo¤ is most typically the discounted sum of the payo¤s across
stages

� The underlying idea: players may punish other players�deviations from
nice behavior by their future play

� This may discipline behavior in the current period

� As a result, more cooperative behavior is possible

2.1 Stage game

� A stage game is a �nite I-player simultaneous-move game

� Denote by Ai, i = 1; :::; I the action spaces within a stage

� Stage-game payo¤ given by

gi : A! R.

� In an in�nite horizon repeated game, the same stage game is repeated
forever
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2.2 Strategies and payo¤s

� Players observe each other�s actions in previous periods

� Therefore, this is a multi-stage game with observed actions

� Denote by at := (at1; :::; atI) the action pro�le in stage t

� As before, history at stage t, ht :=
�
a0; :::; at�1

�
2 Ht, summarizes the

actions taken in previous stages

� A pure strategy is a sequence of maps sti from histories to actions

� A mixed (behavior) strategy �i is a sequence of maps from histories to
probability distributions over actions:

�ti : H
t ! �(Ai) .

� The payo¤s are (normalized) discounted sum of stage payo¤s:

ui (�) = E� (1� �)
1X
t=0

�tgi
�
�t
�
ht
��
;

where expectation is taken over possible in�nite histories generated by �

� The term (1� �) just normalizes payo¤s to "per-period" units

� Note that every period begins a proper subgame

� For any � and ht, we can compute the "continuation payo¤" at the current
stage:

E� (1� �)
1X
�=t

��gi (�
� (h� )) :

� A preliminary result:

Proposition 2 If �� = (��1; :::; �
�
I) 2 �(S1)� :::��(SI) is a Nash equilibrium

of the stage game, then the strategy pro�le

�ti
�
ht
�
= ��i for all i 2 I, ht 2 Ht, t = 0; 1; :::

is a sub-game perfect equilibrium of the repeated game. Moreover, if the stage
game has m Nash equilibria

�
�1; :::; �m

�
, then for any map j (t) from time

periods to f1; :::;mg, there is a subgame perfect equilibrium

�t
�
ht
�
= �j(t),

i.e. every player plays according to the stage-game equilibrium �j(t) in stage t.

� Check that you understand why these strategies are sub-game perfect
equilibria of the repeated game

� These equilibria are not very interesting. The point in analyzing repeated
games is, of course, that more interesting equilibria exist too
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2.3 Folk theorems

� What kind of payo¤s can be supported in equilibrium?

� The main insight of the so-called folk theorems (various versions apply un-
der di¤erent conditions) is that virtually any "feasible" and "individually
rational" payo¤ pro�le can be enforced in an equilibrium, provided that
discounting is su¢ ciently mild

Individually rational payo¤s:

� What is the lowest payo¤ that player i�s opponents can impose on i?

� Let
vi := min��i

max
�i

gi (�i; ��i) ;

where �i 2 �(Si) and ��i 2 �j 6=i�(Sj)

� It is easy to prove the following:

Proposition 3 Player i�s payo¤ is at least vi in any Nash equilibrium of the
repeated game, regardless of the level of the discount factor.

� Hence, we call f(v1; :::; vI) : vi � vi for all ig the set of individually ratio-
nal payo¤s.

Feasible payo¤s:

� We want to identify the set of all payo¤ vectors that result from some
feasible strategy pro�le

� With independent strategies, feasible payo¤ set is not necessarily convex
(e.g. in battle of sexes, payo¤

�
3
2 ;

3
2

�
can only be attained by correlated

strategies)

� Also, with standard mixed strategies, deviations are not perfectly detected
(only actions observed, not the actual strategies)

� But in repeated games, convex combinations can be attained by time-
varying strategies (if discount factor is large)

� To sidestep this technical issue, we assume here that players can condition
their actions on the outcome of a public randomization device in each
period

� This allows correlated strategies, where deviations are publicly detected

� Then, the set of feasible payo¤s is given by

V = co fv : 9a 2 A such that g (a) = vg ;

where co denotes convex hull operator
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� Having de�ned individually rational and feasible payo¤s, we may state the
simplest Folk theorem:

Theorem 4 For every feasible and strictly individually rational payo¤ vector v
(i.e. an element of fv 2 V : vi > vi for all ig), there exists a � < 1 such that
for all � 2 (�; 1) there is a Nash equilibrium of the repeated game with payo¤s v.

� The proof idea is simple and important: construct strategies where all the
players play the stage-game strategies that give payo¤s v as long as no
player has deviated from this strategy. As soon as one player deviates,
other players turn to punishment strategies that "minmax" the deviating
player forever after.

� If the players are su¢ ciently pationt, any �nite one-period gain from de-
viating is outweighed by the loss caused by the punishment, therefore
strategies are best-responses (check the details).

� The problem with this theorem is that the Nash equilibrium constructed
here is not necessarily sub-game perfect

� The reason is that punishment can be very costly, so once a deviation has
occurred, it may not be optimal to carry out the punishment

� However, if the minmax payo¤ pro�le itself is a stage-game Nash equilib-
rium, then the equilibrium is sub-game perfect

� This is the case in repeated Prisoner�s dilemma

� The question arises: using less costly punishements, can we generalize the
conclusion of the theorem to sub-game perfect equilibria?

� Naturally, we can use some low-payo¤ stage-game Nash equilibrium pro�le
as a punishment:

Theorem 5 Let �� be a stage-game Nash equilibrium with payo¤ pro�le e.
Then, for any feasible payo¤ vector with vi > ei for every i, there is a � < 1
such that for all � 2 (�; 1) there is a sub-game perfect Nash equilibrium of the
repeated game with payo¤s v.

� The proof is easy and uses the same idea as in above theorem, except
here one uses Nash equilibrium strategy pro�le �� as the punishment to
a deviation

� Because the play continues according to a Nash equilibrium even after
deviation, this is a sub-game perfect equilibrium

� Note that the conclusion of Theorem 5 is weaker than in Theorem 4 in
the sense that it only covers payo¤ pro�les where each player gets more
than in some stage-game Nash equilibrium
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� Is it possible to extend the result to cover all individually rational and
feasible payo¤ pro�les?

� Fudenberg and Maskin (1986) show that the answer is positive: in fact,
for any v 2 V such that vi > vi for all i, there is a SPE with payo¤s v
given that � is high enough (given an additional dimensionality condition
on the payo¤ set: the dimension of the set V equals the number of players)

� See Fudenberg-Tirole book or the original article for the construction

2.4 Structure of equilibria

� The various folk theorems show that repeated interaction makes coopera-
tion feasible as � ! 1

� At the same time, they show that the standard equilibrium concepts do
little to predict actual play in repated games: the proofs use just one
strategy pro�le that works if � is large enough

� The set of possible equilibria is large. Is there a systematic way to char-
acterize behavior in equilibrium for a given �xed �?

� What is the most e¤ective way to punish deviations?

� At the outset, the problem is complicated because the set of potential
strategy pro�les is very large (what to do after all possible deviations...)

� Abreu (1988) shows that all subgame perfect equilibrium paths can be
generated by simple strategy pro�les

� "Simple" means that these pro�les consists of I+1 equilibrium paths: the
actual play path and I punishment paths.

� A path is just a sequence of action pro�les

� This is a relatively simple object - does not contain description of players�
behavior after deviations

� The idea is that a deviation is punished by switching to the worst subgame
perfect equilibrium path for the deviator:

�Take a path as a candidate for a subgame perfect equilibrium path.
We want to de�ne a simple strategy pro�le that is a SPE and supports
this path.

�Find the worst sub-game perfect equilibrium path for each player.
These are used as "punishment" paths.

�De�ne players�behavior: follow the default path as long as no player
deviates.

� If one player deviates, switch to the punishment path of the deviator.
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� If there is another deviation from the punishment srategy, again
switch to the equilibrium that punishes deviator.

�By one step deviation principle, this is a sub-game perfect equilibrium
that replicates the original equilibrium path (recall that one-step de-
viation principle works for in�nite horizon games with discounting)

�Note that once all players follow these strategies, there is no deviation
and hence punishment are not used along equilibrium path

� For a formalization of this, see Abreu (1988): "On the theory of in�nitely
repeated games with discounting", Econometrica 56 (2).

2.5 Example: oligopoly

� Finding the worst possible SPE for each player, as the construction above
requires, may be di¢ cult

� However, for symmetric games, �nding the worst strongly symmetric pure-
strategy equilibrium is much easier

� A strategy pro�le is strongly symmetric, if for all histories ht and all
players i and j, we have si (ht) = sj (ht)

� Following the same idea as in Abreu (1988), we can construct the best
strongly symmetric equilibrium by �nding the worst punishment paths in
the class of strongly symmetric equilibria

� This works nicely in games where arbitrarily low stage-game payo¤s may
be induced by symmetric strategies

� As an example, consider a quantity setting oligopoly model (with contin-
uum action spaces)

� This originates from Abreu (1986), "Extremal equilibria of oligopolistic
supergames", Journal of Economic Theory (here adapted from Mailath-
Samuelson book)

� There are n �rms, producing homogeneous output with marginal cost
c < 1

� Firms maximize discounted sum of stage payo¤s with discount factor �

� Given outputs q1; :::; qn, stage payo¤ of �rm i is

ui (q1; :::; qn) = qi

0@max
8<:1�

nX
j=1

qj ; 0

9=;� c
1A .
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� The stage game has a unique symmetric Nash equilibrium

qNi =
1� c
n+ 1

:= qN , i = 1; :::; n

with stage payo¤s

ui
�
qN1 ; :::; q

N
n

�
=

�
1� c
n+ 1

�2
.

� The symmetric output that maximizes joint pro�ts is

qmi =
1� c
2n

:= qm

giving payo¤s

ui (q
m
1 ; :::; q

m
n ) =

1

n

�
1� c
2

�2
.

� Note that in this model, one sub-game perfect equilibrium is trivially
si (h

t) = qN for all i and ht

� Therefore, if � is high enough, optimal outputs are achieved by Nash-
reversion strategies: play qm as long as all the players do so, otherwise
revert to playing qN forever

� However, cooperation at lower discount rates is possible with more e¤ec-
tive punishments as follows

� Let � (q) denote a payo¤ with symmetric output pro�le qi = q for i =
1; :::; n:

� (q) = q (max f1� nq; 0g � c)

� Let �d (q) denote maximal "deviation payo¤" for i when others produce
q:

�d (q) = max
q1
u1 (q1; q; :::; q)

=

�
1
4 (1� (n� 1) q � c)

2 if 1� (n� 1) q � c � 0
0 otherwise

� Note that � (q) can be made arbitrarily low with high enough q, allowing
severe punishments

� Also, �d (q) is decreasing in q and �d (q) = 0 for q high enough

� Let v� denote the worst payo¤ achievable in strongly symmetric equilib-
rium (can be shown as part of the construction that a strategy pro�le
achieving this minimum payo¤ exists)
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� Given this, the best payo¤ that can be achieved in SPE is obtained by
every player choosing q� given by

q� = argmax
q
� (q) (1)

subject to
� (q) � (1� �)�d (q) + �v�; (2)

where the inequality constraint ensures that playinng q� (now and forever)
is better than choosing the best deviation and obaining the worst SPE
payo¤ from that point on

� How do we �nd v�?

� The basic insight is that we can obtain v� by using a "carrot-and-stick"
punishment strategy with some "stick" output qs and "carrot" output qc

� According to such strategy, choose output qs in the �rst period and there-
after play qc in every period, unless any player deviates from this plan,
which causes this prescription to be repeated from the beginning

� Intuitively: qs leads to painfully low pro�ts (stick), but it has to be su¤ered
once in order for the play to resume to qc

� To be a SPE, such a strategy must satisfy:

1. Players don�t have an incentive to deviate from "carrot":

� (qc) � (1� �)�d (qc) + � [(1� �)� (qs) + �� (qc)] or
�d (qc)� � (qc) � � (� (qc)� � (qs)) (3)

2. Players dont�have an incentive to deviate from "stick":

�d (qs) � (1� �)� (qs) + �� (qc) (4)

� To �nd the optimal "carrot-and-stick" punishment, we can proceed as
follows:

� First, guess that joint optimum qm can be supported in SPE. If that is
the case, then let qc = qm, and let qs be the worst "stick" that the players
still want to carry out (knowning that this restores play to qm), ie solve
qs from

�d (qs) = (1� �)� (qs) + �� (qm) :

� If
�d (qm)� � (qm) � � (� (qm)� � (qs)) ;

then no player indeed wants to deviate from qm, and this carrot-and-stick
strategy works giving:

v� = (1� �)� (qs) + �� (qm)

11



� However, if
�d (qm)� � (qm) > � (� (qm)� � (qs)) ;

then the worst possible punishment is not severe enough, and qm cannot
be implemented

� Then we want to �nd the lowest qc > qm for which there is some qs such
that (3) and (4) hold

� This task is accomplished by �nding qc and qs that solve those two in-
equalities as "=" (both "incentive constraints" bind)

� Note that this algorithm gives us the solution to (1) - (2): q� = qc and
v� = (1� �)� (qs) + �� (q�)

� Is something lost by restricting to strongly symmetric punishment strate-
gies? If v� = 0, then clearly there cannot be any better asymmetric pun-
ishments (every player guarantees zero by producing zero in every period).
Then restricting to strongly symmetric strategies is without loss

� However, if v� > 0, then one could improve by adopting asymmetric pun-
ishment strategies

� It can be shown that q� and v� are decreasing in discount factor �, and
corresponding stick output qs is increasing in �

� That is, higher discount factor improves the achievable stage-payo¤ by
making feasible punishments more severe

� For a high enough discount factor, we have v� = 0 and q� = qm
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