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Introduction

For suggested solution to problem 4, last year’s suggested solutions by
Tsz-Ning Wong were used who I think used suggested solutions by Julia
Salmi from three years ago.

Problems and suggested solutions

In problem 1, we investigate what predictions about the play of the
game we can make based solely on the knowledge that one of the player’s
is rational. We also study how the quality of such predictions varies with
risk attitude of the player.

Problem 1 (Risk-aversion and implications of rationality).

Consider the following static game:

1. Set of players, I = {1, 2}

2. Pure strategy space for player 1, S1 = {t,m,b}

3. Pure strategy space for player 2, S2 = {l, r}

4. An outcome function maps a strategy profile to monetary payments for
player 1 and player 2: g : S1 × S2 → R2. Player 1’s component of the
outcome function, g1 : S1 × S2 → R is presented in table 1 below

Further, we assume that player 1 is rational. Our purpose here is to investigate
implication of player 1’s rationality on her play, and how the implications vary
with her risk attitude. 1

1Reminder: if we know that a player is rational, all we could say about her play is that
she is not going to play a strategy which is never best response. Recall, that a strategy s1 of
player 1 is never best response if there is no conjecture, µ ∈ ∆(S2), player 1 could make on
the actions of player 2, such that s1 is a best-response to µ.



l r
t 3 0

m 1 1

b 0 3

Table 1: Monetary payment for player 1 as a function of the strategy profile

a) Assume that player 1 is risk-neutral and self-centered, that is her von
Neumann-Morgenstern utility function, v : R2 → R, is defined by
v(x,y) = x, where the first argument of the function v is monetary
payment to player 1, and the second argument is monetary payment
to player 2. Which pure strategies of player 1 are never best response?
In other words, with the assumptions we made on player 1’s prefer-
ences over monetary outcomes and lotteries over them, play of which
strategies contradicts her rationality?

Solution. The set of all possible conjectures on the actions of player
2 is ∆(S2). Every element in this set, µ ∈ ∆(S2), can be represented by a
number π ∈ [0, 1], which is probability of player 2 taking action l. Consider
the following partition of ∆(S2): C1 := {π : π < 1

2
}, C2 := {π : π > 1

2
} and

C3 := {π : π = 1

2
}.2 {C1,C2,C3} indeed constitutes a partition of ∆(S2), since

C1 ∪ C2 ∪ C3 = ∆(S2), C1 ∩ C2 = ∅, C1 ∩ C3 = ∅, and C2 ∩ C3 = ∅.
Now any conjecture on the actions of player 2, player 1 might entertain,

must fall into one and only one of the sets among C1,C2,C3. Suppose,
the conjecture is in the set C1. Then, the best response of player 1 to any
such conjecture π ∈ C1 is b. To see this, below we write down player 1’s
expected utility when her conjecture is π ∈ C1 and she choses t, m and b
respectively.

Her expected utility when choosing t is

Eπ∈C1
[u(t)] = π ∗ 3+ (1− π) ∗ 0 < 3

2

Her expected utility when choosingm is

Eπ∈C1
[u(m)] = π ∗ 1+ (1− π) ∗ 1 = 1

2Reminder: according to Wikipedia, “partition of a set is a grouping of the set’s elements
into non-empty subsets, in such a way that every element is included in one and only one
of the subsets"



And eventually, her expected utility when choosing b is

Eπ∈C1
[u(b)] = π ∗ 0+ (1− π) ∗ 3 > 3

2

Thus, for any conjecture π ∈ C1, bmaximizes player 1’s expected utility,
and therefore b is unique best-response to any conjecture π ∈ C1.

Similar calculations would show that for any conjecture π ∈ C2, tmaxi-
mizes player 1’s expected utility, and therefore t is unique best-response to
any conjecture π ∈ C2.

For the conjecture π ∈ C3, both b and t yield expected utility of 3

2
which

is larger than expected utility of m - which is still 1 regardless of the con-
jecture - and therefore b, t, as well as any mixed-strategy which assigns
positive probability only to actions b and t constitute best response to such
hypothesis.

Thus, we listed all the possible conjectures and found thatm is the only
pure strategy of player 1, which is never best response. To summarize, we
started off with assuming that player 1 is rational, risk-neutral, cares only
about his own monetary payment, and arrived at the conclusion that such
player would never choose strategy m. That is, with the assumptions we
made, all we can say about the outcome of the play is that it must be in
the set: O := {(t, l), (t, r), (b, l), (b, r)}, and we have gotten this far without
making any assumptions on rationality or preferences of player 2.

b) Assume that player 1 is risk-averse and self-centered, with her von
Neumann-Morgenstern utility function, v : R2 → R, defined by
v(x,y) =

√
x, where the first argument of the function v is monetary

payment to player 1, and the second argument is monetary payment
to player 2. Which pure strategies of player 1 are never best re-
sponse? In other words, with the assumptions we made on player 1’s
preferences over monetary outcomes and lotteries over them, play of
which strategies contradicts her rationality?

Solution: First, observe that player 1’s best response to the conjecture
which assigns probability 1 to player 2’s strategy l is to play t; similarly, her
best response to the conjecture which assigns probability 1 to r is b. Next,
suppose that player 1 believes that 2 is equally likely to play l and r. With
such conjecture, expected utility from playing t is



Eπ= 1

2

[u(t)] =
1

2

√
3 ≈ 0.87

Expected utility from playingm is

Eπ= 1

2

[u(t)] =
1

2
1+

1

2
1 = 1

and expected utility from playing b is

Eπ= 1

2

[u(t)] =
1

2

√
3 ≈ 0.87

Hence, if player 1’s subjective belief is such that he thinks that player 2

is equally likely to play l and r, then player 1 is going to playm herself.
Thus, for each pure strategy of player 1, we found a conjecture such

that the strategy is a best response to the conjecture. Hence, none of the
player 1’s strategies are never best-response. Summarizing, we started off
with assuming that player 1 is rational, risk-averse, cares only about his
monetary payment, and arrived at the conclusion that such player could
choose any strategy depending on the conjecture she entertains. That is,
with the assumptions we made, we cannot say anything about the outcome
of the play.

c) Compare your answers to parts a) and b). As player 1 becomes
risk-averse, does the set of justifiable strategies of player 1 expands,
shrinks or does not change? 3 Does the set of the outcomes of the
play consistent with rationality of player 1 expands, shrinks, or does
not change as she becomes more risk-averse? What is the intuition
behind that? Do you think it is a general result or it is specific to the
game we analyzed, and why?

Solution. The set of justifiable strategies expands as player 1 becomes
risk-averse: the set of justifiable actions for the risk-neutral player in part
a) is {t,b} while it is {t,m,b} for the player who is risk-averse in part b).
This is a general result from Weinstein (2015). The intuition behind it is that
risk-aversion might make “safe" strategies like {m} which provide the same
payoff regardless of 2’s play justified by nondeterministic conjectures of 1
on 2’s play; at the same time, “risky" strategies like {t} and {b} are best justi-

3A strategy of player 1, s1, is justifiable if it is not never best response



fied by deterministic conjectures which bear no risk for the decision-maker
and therefore degree of risk-aversion does not matter for their justification.

Just knowing that players are rational often does not let us make any
predictions on the play apart from “anything can happen". Therefore
game theorists typically assume that players are not only rational, but
there is also common knowledge of rationality between the players. The
difference is that a rational player never plays a strategy which is not a
best reply against any conjecture on the others’ play while a player in a
game with common knowledge of rationality never plays a strategy which
is not a best reply to any reasonable conjecture. In problem 2, we investigate
implications of assuming common knowledge of rationality rather than
“only" rationality, and clarify what makes a conjecture unreasonable in the
view of common knowledge of rationality.4

Problem 2 (Common knowledge of rationality and its implications).

Consider the game<{1, 2}, (Si), (ui)>, where Si := R+ and ui(s1, s2) = si ∗
max{0, αβ− s1

2β− s2
2β }−

s2i
2m , where α > 0, β > 0, andm > 0. Notice that this cap-

tures Cournot duopoly game, with the demand functionD(p) = 2max{0,α−βp}

and the cost function C(si) =
s2i
2m . What are implications of assuming common

knowledge of rationality?5

Solution. For player i, there is no conjecture on the action of player j 6= i
that would justify (see footnote 3) si > 	s1 := α m

β+m . That is, rationality
implies that player i never chooses si > 	s1. To see this, first treat sj as
a parameter of the problem, and write down necessary condition for the
optimality of si:

si = α
m

m+ β
−
sj

2

m

m+ β
(1)

4Also see extra-problem 1 where we informally attempt to clarify the concept of common
knowledge and contrast it with the concept of mutual knowledge

5Hint: assuming common knowledge of rationality allows us to iteratively delete strictly
dominated strategies



We can think of (1) as a best response function of player i to a deter-
ministic conjecture assigning probability 1 to j playing sj. Clearly, si is
decreasing in sj. That is, the largest si rational i would ever choose is in
response to conjecture sj = 0 (since rules of the game dictate that sj > 0 no
player who knows rules of the game would conjecture sj < 0). Thus, we
substitute sj = 0 into equation (1), and infer that all the strategies si > 	s1

are never best response.
To summarize, we found that rational players would choose strategies

from the interval [0,α m
β+m ]. Therefore mutual knowledge of rationality

(player i knows that player j is rational) rules out “unreasonable" conjec-
tures which assign positive probability to j’s play of the strategies outside
of the above interval. Then, there is no reasonable conjecture which would
justify si < s1 := α

m
β+m− α

2

m2

(β+m)2
- we get here by substituting the largest

possible quantity consistent with the rationality of i’s opponent into (1).
That is, if i knows that j is rational i would choose strategies from the in-
terval [α m

β+m − α
2

m2

(β+m)2
,α m
β+m ].

Next, assume that player i knows that j knows that i is rational.
Then i knows that j chooses a strategy from the interval [α m

β+m −
α
2

m2

(β+m)2
,α m
β+m ], and therefore any conjecture which assigns pos-

itive probability to j’s play of the strategies outside this interval is
unreasonable. Now notice that the reasonable conjecture which leads
to the largest si is α m

β+m − α
2

m2

(β+m)2
. That tells us that if i knows

that j knows that i is rational, i will not choose strategy si such that
si > 	s2 := α

m
β+m − α

2

m2

(β+m)2
+ α

4

m3

(m+β)3

Continuing in the same fashion, we get that

	sk = α
m

β+m

k−1∑
i=0

(
m

2(m+ β)

)2i

−
α

2

m2

(β+m)2

k−2∑
i=0

(
m

2(β+m)

)2i

and:

sk = α
m

β+m

k−1∑
i=0

(
m

2(m+ β)

)2i

−
α

2

m2

(β+m)2

k−1∑
i=0

(
m

2(β+m)

)2i

Assuming common knowledge of rationality is equivalent to assum-



ing that [both players know that]n that both players are rational for all
n. Hence, we let k go to infinity and players who know that [ both play-
ers know that]∞ both players are rational choose strategies in the interval
[limk→∞ sk, limk→∞ 	sk], and

sk = 	sk =
2αm

3m+ 2β

Hence, there is unique conjecture i could have on the play of j which is
consistent with common knowledge of rationality.

In any game, a rational player is not going to play a strategy which
is never best response. Trying to verify that there is no conjecture which
would justify the strategy could be cumbersome, and therefore a natural
question is whether we could characterize the set of justifiable actions
with no reference to conjectures and expected payoff maximization. In the
lecture notes, this question was answered positively for a general game -
it was proven that a strategy, si, is never best reply (not justifiable) if and
only if it is strictly dominated. Problem 3 provides intuition for the proof
presented in the lecture notes with the particular example.

Problem 3 (Intuition for the separating hyperplane proof).

Consider the following static game:

1. Set of players, I = {1, 2}

2. Pure strategy space for player 1, S1 = {a,b, c,d}

3. Pure strategy space for player 2, S2 = {l, r}

4. von Neumann-Morgenstern utility function of player i, ui : S1 × S2 → R.
Player 1’s von Neumann-Morgenstern utility function, u1 : S1 × S2 → R
is presented in the matrix below

Any conjecture player 1 might have on the play of 2 induces preference relation on
the space of payoff pairs. Plot the graph where (i) horizontal axis represents payoff
to player 1 when 2 plays l; (ii) vertical axis represents payoff to player 1 when 2

plays r.



l r

a 5 1

b 1 5

c 2 2

d 1 1

a) Plot the extreme points of the set of feasible expected payoff vectors
of player 1 which is defined below

E := {(x,y) : ∃s1 ∈ S1 : x = u(s1, l),y = u(s1, r)}

(Definition in words: the set of extreme points is the set of (x,y)-
pairs such that player 1 has a strategy such that when this strategy is
played and 2 plays l, 1’s payoff is x, and such that when this strategy
is played and 2 plays r, 1’s payoff is y

b) Plot the set of feasible payoff vectors for player 1 (in other words, the
set of all convex combinations of the vectors plotted in part a))

c) In the set of feasible payoff vectors, mark the payoff vectors which
correspond to the strategies which are not dominated

d) Pick any payoff vector corresponding to the strategy which is not
dominated, and plot the set of vectors in R2 which are strictly greater
than the chosen payoff vector 6

e) Plot a separating hyperplane - a line separating the set of feasible
payoffs from the set plotted in part d) of the problem

f) Plot the vector normal to the separating hyperplane

g) Divide each coordinate of the normal vector by its norm

h) Show that the chosen strategy is the best-response to the conjecture
corresponding to the normalized normal vector

As we saw in the Cournot competition example of the lecture notes or
in problem 2 above, sometimes all but one conjecture on the play of others

6Strictly greater: =greater in each coordinate



contradict assumption of common knowledge of rationality between the
players in the game - and in such cases, we can make precise prediction
on the outcome of the play. However this is not the case in most of the
interesting games about which we still want to be able to say something
of essence. In those games, a natural way to fix conjectures of the players
about the play of others is correlated equilibrium demonstrated in problem
4 below.

Problem 4 (Correlated equilibrium).

Consider the following two-player game:

l r
t 5, 1 0, 0

b 4, 4 1, 5

a) What is the set of rationalizable strategies in the game above?

Solution. For each player, the set of rationalizable strategies is the set of
all the strategies she has available. To see this, plot the similar graph to the
one we plotted in the previous problem and notice that all the strategies are
on the payoff frontier and therefore are best-responses to some conjecture.

b) Find all Nash equilibria of the game. What is the best payoff players
can get in the symmetric equilibrium?7

Solution. There are three Nash equilibria in this game: (t,l),(b,r) and
(1
2
, 1
2
). The best symmetric equilibrium is the mixed strategy equilibrium,

since the pure strategy equilibria are not symmetric. It yields an expected
payoff of 5+4+1

4
= 2.5.

c) Suppose that before choosing their actions, the players first toss a
coin. After publicly observing the outcome of the coin toss, they
choose simultaneously their action. Draw the extensive form of the
described game and define available strategies for the players. Find a
symmetric Nash equilibrium that gives both players a higher payoff
than the symmetric equilibrium in a).

7In the symmetric equilibrium expected payoffs of the players must be the same



Solution. Players can now condition their actions on the coin toss. We
can take this into account by for example denoting the strategies by double
letters (tt), where the first one stands for the action after heads and the latter
one after tails. The set of strategies are thus S1 = {tt, tb,bt,bb} and S2 =

{ll, lr, rl, rr}. The extensive form will be drawn in class, and the strategic
form is presented in table below:

ll lr rl rr
tt 5, 1 2.5, 1

2
2.5, 1

2
0, 0

tb 4.5, 2.5 3, 3 2, 2 1

2
, 2.5

bt 4.5, 2.5 2, 2 3, 3 1

2
, 2.5

bb 4, 4 2.5, 4.5 2.5, 4.5 1, 5

Table 2: Strategic form of the game with the coin toss

Now, it is easy to check in the matrix above that (tb, lr) is a symmetric
equilibrium with the payoffs of (3, 3) which is larger than the symmetric
equilibrium payoffs in b).

d) Suppose that there is a mediator that can make a recommendation
separately and covertly for each player. Suppose that the mediator
makes recommendation (t, l), or (b, l), or (b, r), each with probability
1

3
. Each player only observes her own action choice recommenda-

tion (so that, e.g., the row player upon seeing the recommendation
b does not know whether the recommended profile is (b, l) or (b, r).
Does any of the players have an incentive to deviate from the recom-
mended action? What is the expected payoff under this scheme?

Solution. Recommendations are a neat way to fix the conjecture of
the player about the action of the others. To see this and to confirm
that conforming to recommendations constitutes an equilibrium, lets go
through the recommended strategies case by case:

Player 1
Recommendation: t ⇒ player 1 knows that player 2 will play l. No

incentive to deviate, since the payoff from t is higher than from b (5 > 4).
Recommendation: b ⇒ player 2 will play l or r with equal probability.
Player 1 is indifferent between t and b: 1

2
· 5 + 0 · 1

2
= 4 · 1

2
+ 1 · 1

2
. So no



incentive to deviate.

Player 2
Recommendation: l ⇒ player 2 knows that player 1 will play t

and b with equal probability. Player 2 is indifferent between l and r:
1

2
· 4+ 1 · 1

2
= 5 · 1

2
+ 0 · 1

2
.

Recommendation: r ⇒ player 2 knows that player 1 will play d. Payoff
from r is strictly higher than from l (5 > 4).

The players, therefore, have no incentive to deviate. The expected pay-
off from the scheme is 1+4+5

3
= 31

3
. This is because (D,L), which offers the

highest sum of payoffs, is now played with probability 1

3
.

Problem 5 (Zero-sum game).

Consider the following two-player zero-sum game.

l c r
t 3 -3 0

m 2 6 4

b 2 5 6

Table 3: Payments player 2 makes to player 1

a) Find a mixed strategy of player 1 that guarantees him the same payoff
against any pure strategy of player 2.

Solution. We need to solve the following matrix equation:
3 2 2 −1

−3 6 5 −1

0 4 6 −1

1 1 1 0



x

y

z

p

 =


0

0

0

1


Solving it, we get




x

y

z

p

 =


2

5

3

5

0
12

5


b) Find a mixed strategy of player 2 that guarantees him the same payoff

against any pure strategy of player 1.

We need to solve the following matrix equation:
−3 3 0 −1

−2 −6 −4 −1

−2 −5 −6 −1

1 1 1 0



x

y

z

p

 =


0

0

0

1


Solving it, we get 

x

y

z

p

 =


22

25

2

5

1

5

−12

5


c) Does the play of the mixed strategies found above constitutes Nash

equilibrium of the game?

Lemma 1. Strategies found in a) and b) constitute Nash equilibrium of the game.

Proof. Fix a candidate Nash equilibrium of the game, and suppose that
it features strategies we found in a) and b). Nash equilibrium is a solu-
tion concept assuming that players make correct conjectures about their
opponents’ actions (either mixed or pure), and best respond to the correct
conjecture. So if we want to verify that the strategies indeed constitute NE
(Nash equilibrium) of the game, we need to make sure that each player best
responds to the correct conjecture given by his opponent’s true strategy.

Then, fix the strategy of player 2 to be the one we found in b) and
assume that 1 makes the correct conjecture that 2 is using the strategy from
part b). Then, by construction of the strategy in b), 1 is indifferent between
all his strategies, meaning that any mixed strategy would constitute best-
reponse. Thus, 1’s strategy is indeed best-response to the correct conjecture.



Then, fix the strategy of player 1 to be the one we found in a) and assume
that 2 makes the correct conjecture that 1 is using the strategy from part a).
Then, again by construction 2 is indifferent between all his strategies, so he
might as well mix and that would be best-response.

�

Notice a general unappelaing feature of mixed strategies - fixing a con-
jecture on the actions of player 2 (1), player 1 (2) does not need to mix to
best-respond to the conjecture - playing any of the pure strategies in the
support of the mixed strategy would be as good of a best response as the
mixed strategy itself. Why to mix then? Then the only reason for 1 (2) to
mix is not to increase the own utility, but to sustain stability captured by
the equilibrium concept.
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