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We ended the last problem set with the game which exposed the draw-
backs of PBE in the games of incomplete information. Problem 1 below
presents some games where PBE does not perform well, and introduces
sequential equilibrium (SE) as a remedy to the exposed problems.

Problem 1 (Sequential equilibrium)

a) In the game of Figure 1, Nature chooses L with probability 3

4
. What

are SE of the game? Compare them to PBE found in problem set
2: does SE make more appealing predictions on the outcome of the
game?
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Figure 1: SPE supported by inconsistent beliefs



Solution. Recall a definition of SE from the lecture notes: a pair of
behavioral strategy and a belief system (b,µ) is sequential equilibrium if
two conditions are satisfied:

1. b is sequentially rational given µ

2. consistency: there exists a sequence (bn,µn)→ (b,µ) such that for all
n, bn puts a positive probability on all available actions, and for any
information set h and any x ∈ h, µnh(x) =

Pb
n
(x)

Pb
n
(h)

Next notice that the only consistent belief for player 2 is µ2({(L, T), (R, T)})(R, T) =
1

4
, where µ2({(L, T), (R, T)})(L, T) is the belief assigned to the path (L, T) at

the information set at which player 2 makes a decision, and which could be
reached through either a path (L, T), or a path (R, T). To see this, notice that
for any behavioral strategy of player 1 which assigns positive probability
on all available actions, bn

1
(Out) > 0 and bn

1
(T) > 0, it is the case that

µn
2
({(L, T), (R, T)})(L, T) =

3

4
bn
1
(T)

3

4
bn
1
(T)+ 1

4
bn
1
(T)

= 3

4
. Since the only consistent

belief is µn
2
({(L, T), (R, T)})(L, T) = 3

4
, the only behavioral strategy of player

2 which is sequentially rational given µ2 is b2(l) = 1. Then, proceeding
backwards, the only sequentially rational behavioral strategy of player 1 is
b2(T) = 1.

Thus, the game has unique SE, (b,µ). Let b = (b1,b2) be behavioral
strategies of players 1 and 2 respectively, and µ = (µ1,µ2) be the beliefs at
information sets at which players 1 and 2 make decisions respectively. Then
the unique SE is b = (b1(Out) = 1,b2(l) = 1), µ = (µ1({(L), (R)})(L) =
3

4
,µ2{(L, T), (R, T)}(L, T) =

3

4
).

b) Show that the set of SPE is a proper subset of the PBE in the game of
Figure 2. What are SE of the game?

Solution. There is unique SPE in the game: Player 1 plays In in his first
information set, R in his second information set, and player 2 goes r when
it is his turn to move.

Let b = (b1,b2,b3) be behavioral strategies of the players, where b1 is
probability player 1 plays Out in his first information set, b2 is probability
player 1 plays L in his second information set, and b3 is probability that
player 2 plays lwhen it is his turn to move. Further, let µ be a belief system,
where µ is the belief assigned to the path (In,L) at the information set
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Figure 2: Pathological PBE

at which player 2 makes a decision, and which could be reached through
either a path (In,L), or a path (In,R).

Then b = (b1 = 1,b2 = 0,b3 = 1), µ = 1 is PBE: b is sequentially ratio-
nal given µ, and µ is derived from b using Bayes rule whenever possible.
The other PBE coincides with SPEwhen µ = 0.

It is easy to verify that with b = (b1 = 1,b2 = 0,b3 = 1), belief µ = 1 is
inconsistent - there does not exist a sequence of (bn,µn) → (b,µ) where
µn = bn

2
, since if bn

2
→ 0 then µn → 0.

In lecture notes 3, we analyzed SPE of sequential bargaining game with
alternating offer protocol - i.e., players took turn making offers. In problem
2, we generalize the protocol but focus on a two-period model - and show
that the main insights of the model do not change.

Problem 2 (Random proposer protocol) Players 1 and 2 want to divide a dol-
lar and they have two periods to reach an agreement. Players are risk-neutral, and
if the agreement is not reached by the end of period 2, Nature sets the dollar on fire.
Nature chooses player 1 to make a proposal on a division of the dollar in period
t ∈ {1, 2} with probability π, and with complementary probability it is player 2,
who gets to make a proposal in period t. That is, in period 1 the player recognized
as a proposer by Nature suggests a division of the dollar (x1, 1−x1), and the other
player can either accept or refuse this proposal. If the offer is accepted, the game
ends with payoffs (x1, 1 − x1). If the offer is refused, the game moves to period
2, where Nature chooses a proposer again [she chooses player 1 with probability π,



and player 2 with probability (1−π)], and the recognized player proposes a division
(x2, 1 − x2). If the offer is accepted, the game ends with payoffs (δx2, δ(1 − x2)).
If the offer is rejected, the game ends with payoffs (0, 0). What is the unique SPE
of the game?

Solution
The game is solved by backward induction. If player 1 is chosen to

make a proposal in period 2, then he offers (1, 0), which is accepted by
player 2. If player 2 is chosen to make a proposal in period 2, then she
offers (0, 1), which is accepted by player 1. Going backwards, in period 1,
player 1 would never accept an offer of x1

1
< δπ, since she gets expected

payoff of δπ by refusing an offer. Similarly, player 2 never accepts an offer
1 − x1

1
< δ(1 − π), since she gets expected payoff of δ(1 − π) by refusing

an offer. Next, in period 1 player 1 never refuses an offer of x1
1
> δπ, and

2 never refuses an offer 1 − x1
1
> δ(1 − π). Therefore, if player 1 makes an

offer in period 1, she offers x1
1
= 1 − δ(1 − π), which is accepted by player

2. If it is player 2 who makes an offer in period 2, she offers x1
1
= δπ which

is accepted by player 1. In any case, there is immediate agreement with the
expected payoffs (π, 1− π).

Problem 3 A popular strategy suggestion for playing a repeated prisoner’s
dilemma is called tit-for-tat. In that strategy, both players start by cooperating
(C,C) and in any period t, they replicate the action of their opponent in period
t − 1. Consider the infinitely repeated game where both players discount future
with discount factor δ < 1. The stage-game payoffs are:

C D

C 3, 3 0, 4

D 4, 0 1, 1

Write down a formal definition for the tit-for-tat strategy. Is the strategy profile
where both players play tit-for-tat a Nash equilibrium?
Is it a sub-game perfect Nash equilibrium?

Solution.
A tit-for-tat strategy for player i is defined as



�si(h
t) =


C if t = 0

C if at−1

j = C, j 6= i

D otherwise.

Player i’s objective function is to maximize the normalized sum

Ui(s) = (1− δ)

∞∑
t=0

δtuti
(
sti(h

t), st−i(h
t)
)
.

Notice that in prisoner’s dilemma, the unique stage game Nash equi-
librium yields both players their minmax payoff of 1.

Both players playing tit-for-tat is a Nash equilibrium for high enough
δ. If both players always cooperate, they get normalized payoffs of 3. We
cannot use OSDP for testing a NE since it is essentially backward induc-
tion principle and hence restricted to testing a SPE. Therefore, we have to
think what would be the best deviation among all kind of deviations. Let’s
take it given that player 2 follows tit-fot-tat. Note first that if it is optimal
for player 1 to play D in the first period, it is optimal to play D whenever
player 2 plays C, which happens iff player 1 has played C in the previous
period. Now we see that if (D,C) is optimal behavior in the first two pe-
riods, optimal strategy is to continue (D,C,D,C . . . ) forever. Similarly, if
(D,D) is optimal for the first two periods, it is optimal to continue simi-
larly: (D,D,D, . . . ). We can restrict our attention to these deviations.

u1(DC . . . , �s2) = (1− δ)
[
4(1+ δ2 + δ4 + ...) + 0

]
=

4

1+ δ
.

u1(DD . . . , �s2) = (1− δ)4+ δ = 4− 3δ.

Deviations are unprofitable when

3 >
4

1+ δ
⇔ δ >

1

3
.

3 > 4− 3δ⇔ δ >
1

3
.

Is tit-for-tat strategy a subgame perfect equilibrium? For tit-for-tat strat-



egy profile to constitute a subgame perfect equilibrium, no player should
have an incentive to deviate in any of the possible subgames that could
occur along any path of play if both players play according to their equilib-
rium strategies. There are four types of subgames to consider, depending
what happened in the previous period. Let’s consider each of them at a
time, using the one-step deviation principle:

1. The last realization was (C,C). If player 1 follows tit-for-tat, thus
continuing with C, his payoff is given by

(1− δ)
[
3
(
1+ δ+ δ2 + ...

)]
= 3.

If player 1 deviates, the sequence of outcomes is (D,C), (C,D), (D,C), (C,D), ...,

and his payoff will be

(1− δ)
[
4
(
1+ δ2 + δ4 + ...

)]
=

4

1+ δ
.

Deviation is not profitable when δ > 1

3
.

2. The last realization was (C,D). If player 1 follows tit-for-tat, the re-
sulting sequence of outcomes will be (D,C), (C,D), (D,C), ..., to which the
payoff is 4

1+δ . If player 1 deviates and cooperates, the sequence of outcomes
will be (C,C), (C,C), (C,C), ..., to which the payoff is 3. Deviating is not
profitable as long as

4

1+ δ
> 3

⇔ δ 6
1

3
.

3. The last realization was (D,C). If player 1 follows tit-for-tat, the re-
sulting sequence of outcomes will be (C,D), (D,C), (C,D), ..., to which the
payoff is given by

(1− δ)
[
0(1+ δ2 + δ4 + ...) + 4

(
δ+ δ3 + δ5 + ...

)]
=

4δ

1+ δ
.



If player 1 deviates and plays D instead, the sequence of outcomes will
be (D,D), (D,D), (D,D), ..., to which the payoff would be 1. Deviation is
not profitable when 4δ

1+δ > 1⇔ δ > 1

3
.

4. The last realization was (D,D). Thus the sequence of play will be
(D,D),(D,D),(D,D)..., which will result in a payoff of 1. If player 1 deviates
to C instead, it will result in a sequence of play (C,D),(D,C),(C,D)... And the
payoff will be

(1− δ)
[
0(1+ δ2 + δ4 + ...) + 4

(
δ+ δ3 + δ5 + ...

)]
=

4δ

1+ δ
.

Deviation is not profitable as long as 4δ
1+δ 6 1⇔ δ 6 1

3
.

So, tit for tat is a subgame perfect equilibrium if and only if δ = (1/3).

Problem 4 Consider a two-stage game with observed actions, where in the first
stage players choose simultaneously U1 or D1 (player 1) and L1 or R1 (player 2),
and in the second stage players choose simultaneously U2 or D2 (player 1) and L2
or R2 (player 2). The payoffs of the stage games are shown in the tables below:

First stage:

L1 R1

U1 2, 2 −1, 3

D1 3,−1 0, 0
Second stage:

L2 R2

U2 6, 4 3, 3

D2 3, 3 4, 6

The players maximize the sum of their stage-game payoffs.

a) Find the subgame-perfect equilibria of this game.

Solution. In the first stage game there is only one Nash equilibrium,
(D1,R1), since D1 and R1 are strictly dominant actions for the players. In
the second stage game, there are three Nash equilibria: (U2,L2), (D2,R2),
((3/4,1/4),(1/4,3/4)). Like we have seen previously, any combination of
these Nash equilibria are a subgame perfect equilibrium, i.e. player 1 play-
ing s1

1
= D1, s2

1
(h2) = U2 ∀h2 and player 2 playing s1

2
= R1, s2

2
(h2) = L2

∀h2 is a subgame perfect equilibrium.
Note that we cannot support (U1,L1) as the first stage outcome with

any punishment strategy in the second stage game, since deviating yields a



payoff of 1 and the mixed strategy equilibrium still gives a payoff of (3.75),
which is only 0.25 lower than what the player who is getting a lower payoff
either from (U2,L2), (D2,R2) is getting. Thus it is profitable for that player
to deviate. We can support (U1,R1) or (D1,L1) though by playing the Nash
equilibrium in the second stage that gives the higher payoff to the player
that gets −1 in the first stage. So strategies defined as

s1(h
1) = D1, s1(h

2) =

D2 if h2 = (D1,L1)

U2 otherwise

s2(h
1) = L1, s2(h

2) =

R2 if h2 = (D1,L1)

L2 otherwise

Constitute a SPE with payoffs (7,5). Naturally, the strategies where
player 1’s and 2’s roles are reversed is also a SPE.

b) Suppose that the players can jointly observe the outcome y1 of a
public randomizing device before choosing their first-stage actions,
where y1 is drawn from uniform distribution on the unit interval.
Find the set of subgame-perfect equilibria, and compare the set of
possible payoffs against the possible payoffs in a).

Solution. The public randomization device allows players to attain all
payoffs contained in the convex combinations of the previous SPE. That is
the players can now condition their play on y1 and play different SPE de-
pending on the value of y1. Thus all payoffs that are convex combinations
of (3.75, 3.75), (6, 4), (7, 5), (5, 7) and (4, 6) are now attainable.

c) Suppose that the players jointly observe y1 at the beginning of stage
1 and y2 at the beginning of stage 2, where y1 and y2 are independent
draws from a uniform distribution on a unit interval. Again, find the
sub-game perfect equilibriua and possible payoffs.

Solution. With y2 we can also attain all the convex combinations of the
second stage game payoffs separately, i.e. choosing one of (3.75,3.75), (6,4)
or (4,6) is possible conditional on y2. This allows us to support (U1,L1) as
a first stage outcome. To see why, let’s consider the following strategies:



s1(h
1) = U1, s1(h

2) =


D2 if h2 = (U1,L1) and y2 < 1

2

U2 if h2 = (U1,L1) and y2 > 1

2

(3
4
, 1
4
) otherwise

s2(h
1) = L1, s2(h

2) =


R2 if h2 = (U1,L1) and y2 < 1

2

L2 if h2 = (U1,L1) and y2 > 1

2

(1
4
, 3
4
) otherwise

The expected payoff from second stage is now 5. By deviating the play-
ers can gain 1, but will lose 1.25 in the second stage, so (U1,L1) is support-
able.

One can support similarly any not stage NE equilibrium, which
gives the player, who would have incentives to deviate in a one-
period game, a payoff of at least 4.75 in the second period. Thus
the set of attainable payoffs is now extended to the convex hull of
(3.75, 3.75), (3.75, 8.25), (6.75, 7.25), (7.25, 6.75), and (8.25, 3.75).

Following figure presents the SPE sets in parts (a), (b), and (c).

u1

u2

3.75

3.75 (a)

(b)

(c)



Problem 5 (Folk Theorem) Consider an infinitely repeated game with a stage
game given in the following matrix:

L R

U 5, 0 0, 1

M 3, 0 3, 3

D 0,−1 0,−1

Players have a common discount factor.

a) Find the minmax payoffs for each of the players.

Solution. The minmax payoff are: �v1 = 3, �v2 = −1.

b) Characterize the set of feasible payoff vectors of the stage game (As-
sume that a public randomization device is available).

Solution. A public randomization device enables all payoffs that are
convex combinations of some pure strategy payoffs (dots in the figure).
The set is drawn in the figure on the next page.

c) What is the set of normalized payoff vectors for the repeated game,
such that each element in the set is a subgame perfect equilibrium
payoff vector for some value of the discount factor?

Solution. Any feasible and strictly individually rational payoff is a nor-
malized SPE payoff for an infinitely repeated game with δ high enough. In
addition, repeated play of a stage NE is always a SPE. This is equivalent as
having:

{SPE} = {(u1,u2)|(u1,u2) ∈ co{(0,−1), (0, 1), (3, 3), (3, 0), (5, 0)},u1 > 3,u2 > −1}∪(3, 3).

Following figure illustrates this set.
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d) Can you construct some subgame perfect equilibrium strategies lead-
ing to the constant play of (U,L) in the equilibrium path?

Solution. Strategies should punish players from deviations, including
deviations from punishing the other player. Punishments has to be sequen-
tially rational (NEa for subgames starting from a deviation). A natural pun-
ishment for player 1 is that player 2 always plays R. This punishment is au-
tomatically sequentially rational since it leads to a continuous play of the
stage NE.

Punishment path for player 2 is trickier: constant play of D is not part
of a NE. There has to be incentives for player 1 to do the punishment. In
other words, the play should change back to (U,L) in the future. Following
startegies constitute a SPE with δ high enough:

�s1(h
t) =


U if t = 0 or at−i

2
= L ∀i ∈ {1, . . . , T } and player 1 has not deviated

M if player 1 has deviated

D if at−i
2

= R for some i ∈ {1, . . . , T } and player 1 has not deviated

�s2(h
t) =

L if player 1 has not deviated

R if player 1 has deviated.



There are three different kind of states: the equilibrium path, the pun-
ishment path for player 1, and the punishment path for player 2 (there are
actually T different states on this path). We have to check that no-one has a
profitable one-step deviation in any of these states.

Player 1:

1. On the equilibrium path. Clearly, not.

2. On the punishment path for player 1. No, it is a stage NE.

3. On the punishment path for player 2. Deviation is not profitable iff

δT+15 > (1− δ)5+ δ3⇔ δT+1 > 1−
2

5
δ. (1)

Player 2:

1. On the equilibrium path. Deviation is not profitable iff

0 > (1− δ)1− (δ− δT+1)⇔ δT+1 6 2δ− 1. (2)

2. On the punishment path for player 1. No, it is a stage NE.

3. On the punishment path for player 2. No, there are no short term or
long term gains.

By combining 1 and 2, we get 1− 2

5
δ 6 δT+1 6 2δ− 1. For T = 2, this is

satisfied e.g. for all δ > 0.9.

e) Let’s change the game so that payoffs for (D,L) and (D,R) are (0, 0).
Can there now be an equilibrium with a constant play of (U,L)?

Solution. No, there cannot be a punishment for player 2 since she
already gets her minmax payoff. This would be the case even if the payoff
structure was u (D,L) = (0, 0) and u (D,R) = (0,−1) so that there was a
lower feasible payoff but the minmax payoff was still 0.

Problem 6 Consider a model where two sellers sell an identical good to a sin-
gle consumer (without storage possibilities) over an infinite horizon. The firms
compete by setting prices simultaneously at the beginning of each period and the



consumer chooses which of the prices to accept at the end of the stage. The con-
sumer has unit demand in each period, i.e. she is willing to pay up to v in each
period to buy one unit. Additional units are worthless to the buyer. Assume that
the good can be produced at marginal cost c.

a) Suppose that the buyer is myopic, i.e. she has a discount factor
δC = 0 whereas the firms are patient and have a discount factor
0 < δF < 1. What is the smallest δF that is compatible with collusive
pricing in the market in subgame perfect equilibrium? I.e. for what
δF is it possible to set prices pit = v for all i and all t on the equilibrium
path? What is the punishment path supporting this? (Hint: what are
the strategies of the players?)

Solution. Let’s restrict to cases where the sellers don’t set prices above v.
The buyer accepts at least one price every period. If the buyer accepts both
prices (when pit = pjt), both firms have an equal probability of getting
their good sold in that period. Since the buyer is myopic and maximizes
her periodic utility only, she does not condition her decision of acceptance
on the publicly observed history of prices. Therefore, let buyer’s strategy
be given by

stB(pit) =

Accept if pit 6 pjt

Reject otherwise
, i ∈ {1, 2} , i 6= j.

Comment. A strategy for firm i is a function sti : H
t → R+ that assigns

a price to every possible history in the game. Define the strategy of the
buyer as stB : R+ → {accept, reject} which determines for each element
of the price vector p = (pit,pjt) that she observes whether to accept or
reject it. The buyer accepts at least one price every period. If the buyer
accepts both prices (when pit = pjt), both firms have an equal probability
of getting their good sold in that period such that firm i’s expected payoff
from that period is 1

2
(pit − c), i = 1, 2. The decision that a consumer faces

every period concerns the choice of the price that she pays in period t.
To find the smallest δF compatible with collusive pricing, the firms must

use the most severe punishment available so that even the most impatient
firm has no incentive to deviate. The minmax payoffs of both firms are



0, obtained when the price equals marginal cost c. Consider therefore the
following grim-trigger strategy profile of the firms as a candidate for a SPE:

sti(h
t) =


v if t = 0

v if aτ = (v, v) ∀τ < t

c otherwise .

For this strategy profile to be subgame perfect, there must be no prof-
itable deviations starting from any possible subgame. Suppose that in pe-
riod t−1 collusion was sustained and the vector of quoted prices was (v, v).
If firm i sticks to the equilibrium strategy from period t onwards, its payoff
is given by 1

2
(v − c). If it instead sets a price pit = v − ε, thereby selling

its good with certainty in period t, and confines to the equilibrium strategy
profile thereafter, it obtains a payoff of (1 − δ) [(v− ε− c) + 0] . Deviation
is not profitable as long as δ > 1

2
.

b) Suppose next that all players, i.e. the sellers as well as the buyer
have the same discount factor δ. Can you find an equilibrium where
collusion is possible at a δ below that found in the previous part?
(Hint: try to constract strategies for the sellers that reward the buyer
for not falling for a price cut of the competitor)

Solution. What the firms are now able to do, once the consumer is
patient, is to condition the consumer’s future payoffs on her actions today.
They can ’punish’ the consumer if she falls for the price-cut and in turn
’reward’ her for ignoring the price-cut and buying at the monopoly price
instead. This in turn will in equilibrium make it unprofitable for firms to
break the collusion.

Consider the following strategies for the players.
Consumer: Buy at price pt = v as long as both firms quote it. If a

unilateral price-cut of at most ε∗ is observed in any period t, ignore it and
buy at the monopoly price pt = v and thereafter buy at the price of pτ = c

in all periods τ > t. If a unilateral price-cut of more than ε∗ is observed in
any period t, buy at the lowest quoted price.

Firm i, i = 1, 2:
I. Quote price pit = v as long as no one has deviated. If a deviation



occurs at t, and if consumer buys from the defector, stay in I. If consumer
does not buy from the defector, move to II.

II. Quote price piτ = c for all remaining periods.

Let us check whether these strategies constitute a subgame perfect
equilibrium. Consider first the consumer.

1. If no one has deviated, and pt = (v, v), she can only accept the price
and get a payoff of 0.

2. If a price cut is observed in period t, and the lowest quoted price is
p′ = v− ε, consumer does not buy at p′ if and only if

(1− δ)

[
0+ (v− c)

∞∑
t=1

δt

]
> (1− δ) [ε+ 0]⇔ ε 6

δ(v− c)

1− δ
≡ ε∗. (3)

Consider then firm i.
1. Suppose no one has deviated prior to time t. If firm continues quoting

the monopoly price, it gets a payoff of 1

2
(v − c). If it deviates and quotes

a price pit = v − ε, what would its payoffs be? Given equation (3), the
best deviation available for firm i is to quote a price pit = v − ε?,. At this
price the consumer would just be willing to purchase, yielding the firm
immediate gains as long as v−ε?−c > 1

2
(v−c)⇔ ε? 6 1

2
(v−c). Deviation

is not profitable if and only if

1

2
(v− c) > (v− c) −

δ(v− c)

1− δ
⇔ δ >

1

3
.

2. Suppose that a deviation has occurred in t−1 (and the consumer bought
from the defector). The choice that firms faces is the same as what it faces
along the collusive path.

3. Suppose that a deviation has occurred in t− 1 (and the consumer did
not buy from the defector). This leads to stage NE.

Therefore, collusive equilibrium exists iff δ > 1

3
, which is less than in

(a).


