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Abstract

In this note we provide the explicit solution to the simple of model
of Section 2. Proposition 1 follows from this solution. This proof builds
on the myopia result explained in Section 3 of the paper. We derive the
stopping rule for a myopic investor when the aggregate capacity k is taken
as given, and from this we derive the equilibrium path k = k(x̂) and its
properties.
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Lemma 1 Given the specification (1)-(4) in the main text, the optimal cut-off
rule for a myopic investor as defined in Lemma 1 in the text is
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Proof. Given k, the revenue process for an existing new plant is defined by

P (x; k) =

{C(A−Bk)
B+C

+ B
B+C

x, for x ≤ A − Bk

A − Bk, for x > A − Bk

=
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where we use the definitions

Q (k) =
C (A − Bk)

B + C
, R =

B
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The value of an existing plant, denoted by V (x; k), satisfies the following ordi-
nary differential equation:

1

2
σ2X2V ′′ (x; k) + (r − δ)xV ′ (x; k) − rV (x; k) + P (x; k) = 0,

where r is the discount rate, and δ = r−α. The general solution of the equation
is

V (x; k) =

{
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=

{

B0
1xβ1 + B0

2xβ2 + Q(k)
r

+ Rx
δ

, for x ≤ A − Bk

B+
1 xβ1 + B+

2 xβ2 + A−Bk
r

, for x > A − Bk.

where
The two boundary conditions lim

x→0+
V (x; k) = Q(k)

r
and lim

x→∞

V (x; k) = A−Bk
r

imply that B0
2 = 0 and B+

1 = 0. The two remaining parameters would be easily
solved by requiring that the first and second derivatives of the value functions
match at x = A − Bk.

Denote the value of the option to install such a plant by F (x; k). This must
satisfy the following differential equation:

1

2
σ2X2F ′′ (x; k) + (r − δ)XF ′ (x; k) − rF (x; k) = 0,

which has the general solution

F (x; k) = C1x
β1 + C2x

β2 .

The boundary condition lim
x→0+

F (x; k) = 0 implies that C2 = 0. The problem is

to find C1 and the myopic investment treshold xm. There are two possible cases
that must be considered separately: (1) xm ≤ A − Bk, and (2) xm > A − Bk.

The boundary conditions in case xm ≤ A−Bk are (taking into account that
B0

2 = 0):

C1x
β1 = B0

1xβ1 +
Q

r
+

Rx

δ
− I

β1C1x
β1−1 = β1B

0
1xβ1−1 +

R

δ
.

The ceiling A−Bk is irrevelant in this case, and one can solve variable C1 −B0
1

instead of C1. To see this, write these equations as
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From these, we obtain the following linear relationship between xm and k:
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The boundary conditions in case xm > A − Bk are
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This implies that the investment trigger is given by the non-linear equation:
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For the properties of the equilibrium it is enough to focus on the case xm ≤

A − Bk. Let us now use the notation x̂ for the equilibrium investment trigger
which is defined by the myopic trigger xm(k). We can see from (1) that for
xm ≤ A − Bk, the myopic investment trigger xm(k) defines the equilibrium
capacity as a linear function of the current record x̂

k(x̂) =
r(β1 − 1)

β1δC
x̂ +

AC − rI(B + C)

BC
.

Let us now explain the role of volatility for the equilibrium description to
apply. Recall that x̂∗ is the equilibrium investment trigger at which x̂∗ = xm =
P = A−Bk∗. Using the formula for xm (k) as given in (2), we can solve k∗ from

δβ1(B + C)

rB(β1 − 1)
(rI −

AC

B + C
+

BC

B + C
k∗) = A − Bk∗, (3)

which gives

k∗ =
β1(δAC + rAB − δrI(B + C)) − rAB

B(β1(rB + δC) − rB)
,

x̂∗ =
rIδβ1(B + C)

β1δC + rB(β1 − 1)

where the latter equation is obtained by evaluating xm(k) at k∗. Consider now
k = 0 and the condition (3). The ratio β1/(1−β1) increases in σ monotonically
so that the left-hand side of (3) exceeds the right-hand side even at k = 0. This
would imply that the market must shut down before new entry can take place.
There is therefore a unique σ∗ such that equation (3) holds as equality when
k = 0. For all σ < σ∗ we can find a strictly positive value for k∗ and thus for
x̂∗.
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The investment trigger in terms of output price is

PH(x̂) =
C(A − Bk)

B + C
+

B

B + C
x̂ = rI +

β1B(δ − r) + rB

β1δ(B + C)
x̂ for x ≤ x̂∗.

We see that the price is increasing in x̂, implying contraction of output for
x ≤ x̂∗. The price trigger is

PH(x̂) = A − Bk(x̂) for x > x̂∗,

which is decreasing in x̂. The output thus expands for x > x̂∗.
The peak price follows by direct substitution

PH(x̂∗) =
β1δrI(B + C)

β1(rB + δC) − rB
,

which is increasing in σ. When C → 0, the myopic investment trigger ap-
proaches

xm
→

δβ1B

rB(β1 − 1)
rI,

which is independent of k. Thus, once this trigger is reached, there is a discrete
one-time jump in the capacity path. This completes the proof of the Proposition
1.
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