EDUCATION AND INVENTION
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Abstract—Modern growth theory puts invention on the center stage.
Inventions are created by individuals, raising the question of whether we
can increase the number of inventors. To answer this question, we study
the causal effect of MSc engineering education on invention, using data
on U.S. patents’ Finnish inventors and the distance to the nearest techni-
cal university as an instrument. We find a positive effect of engineering
education on the propensity to patent and a negative OLS bias. Our coun-
terfactual calculation suggests that establishing three new technical uni-
versities resulted in a 20% increase in the number of USPTO patents by
Finnish inventors.

1. Introduction

A cornerstone of much of recent growth theory is that
ideas, being nonrival in nature, are a key source of
growth (for surveys, see, e.g., Jones, 2005, and Aghion &
Howitt, 1997, 2009). Furthermore, ideas are produced by
human capital. The central consequence of this line of
thinking is aptly summarized by Charles Jones (2005, p.
1107): “The more inventors we have, the more ideas we
discover, and the richer we all are.” This immediately leads
to the following policy question: (How) can the number of
inventors be increased? We seek to contribute to answering
this question by studying the causal effect of education on
invention. Education has been linked to growth in previous
empirical work at the macrolevel,1 but to the best of our
knowledge, we are the first to address the question at the
microlevel and focus on the link from education to indivi-
duals’ propensity to patent inventions.

Both stylized facts and government policies support the
view that education drives inventions and growth. First, both
in cross section and over time, GDP per capita and levels of
education are positively correlated. Second, societies invest
increasingly large amounts (Freeman, 2010) in education—
educational investments are typically 3% to 6% of GDP*—
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The current consensus (see recent surveys by Sianesi & Van Reenen,
2003; Stevens & Weale, 2004; and Krueger & Lindahl, 2001) seems to be
that there is at best weak empirical support for the causal relation between
education and growth. Aghion et al. (2009), using U.S. state-level data,
provide evidence of a causal link between education and growth (see also
Vandenbussche, Aghion, & Meghir, 2005).

2 See WDI education indicators at http://siteresources.worldbank.org
/DATASTATISTICS/Resources/table2_9.pdf.
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suggesting a strong belief in the existence of a causal link
between education and growth. Third, some rapidly devel-
oping countries, notably China and India, have singled out
science and engineering education as a way to foster future
growth. This is documented in figure 1, which displays the
number of science and engineering graduates in selected
countries (due to lack of data on the former, only the latter
for India).” The two countries showing a notable increase
are China and India. In terms of comparing levels, it is inter-
esting that these two countries outpace others, especially
allowing for the fact that for India, only engineering gradu-
ates are included in the data. Finally, the fact that the United
States has dropped in rankings in science and engineering
graduates, in both absolute and relative terms, has led to
alarm being raised in the United States together with some
analyses on how to react to this (see, e.g., Burrelli & Rapo-
port, 2009; Freeman, 2006, 2010).4

We study the effect of individuals’ education, concentrat-
ing on university (master’s level or higher) engineering
education, on their inventive productivity as measured by
patents, and the quality of the patent. We use data on U.S.
(USPTO) patents matched to individual data on (essen-
tially) the entire Finnish working population over the period
1988 to 1996.° Previous descriptive studies using data on
individual inventors have shown that inventors tend to be
highly educated. Giuri et al. (2007) report that 77% of Eur-
opean inventors in the PatVal survey have a university
degree and 26% have a doctorate. In our data, about 35% of
the inventors have a master’s degree, and 14% have a doc-
torate (see table 1). Onishi and Nagaoka (2013) show that
having a doctorate degree is associated with higher patent
productivity, while Hoisl (2007) finds no relation with edu-
cation and inventor productivity.® In addition, our data
show that the majority of Finnish inventors have an engi-
neering degree (66%), indicating that the field of education

3 The reason for this is that we did not manage to find comparable data
on Indian science graduates. One India Science Report (Shukla, 2005, in
table 2.3) notes that the ratio of science to engineering students is three to
one.

+ See “Worrisome Trends” (2010): “The state of the science and engi-
neering (S&E) enterprise in America is strong, yet its lead is slipping,
according to data released at the White House January 15 by the National
Science Board (NSB).” In the same issue, the assistant director for federal
research and development, Kei Koizumi, is quoted as saying, “U.S. domi-
nance [in science, technology, engineering, and mathematics] has eroded
significantly.” See also the recent report by the Task Force on the Future
of American Innovation. In its list of “signs of trouble,” the authors men-
tion as first that “undergraduate science and engineering degrees within
the U.S. are awarded less frequently than in other countries.” Among
countries with higher rates, they mention Finland. For a less alarmist
view, see Gereffi et al. (2008), who argue that quality is more important
than quantity.

5 Obtained from the NBER patents and citations data file (Hall, Jaffe, &
Trajtenberg, 2002).

© Jones (2009) provides a model that explains changing patterns in
inventor behavior, related to, for example, specialization and teamwork.
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FIGURE 1—SCIENCE AND ENGINEERING GRADUATES IN SELECTED COUNTRIES
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Source: For all countries but India, NSF, 2010 (figure O-8). See http://www.nsf.gov/statistics/seind10
/figures.htm. For India, the source is Banerjee and Muley (2008).

is also associated with patented inventions.” This observa-
tion is in line with Murphy, Shleifer, and Vishny (1991)
who report some evidence that countries with a higher pro-
portion of engineering college majors grow faster. While
existing evidence thus suggests a significant positive asso-
ciation between individuals’ education and their inventive-
ness, the causality of this link remains unexplored. Under-
standing the reasons for the positive association is
important. If it is solely caused by selection, then education
merely functions as a screen, but is not increasing the
inventive potential of an economy. The question is how to
attract the right individuals at the lowest social cost to edu-
cation. If, in contrast, there is a causal impact, then educa-
tion indeed increases the inventive potential of an economy.
The question then is about the socially most beneficial form
and availability of education. These two sources of positive
association between education and invention thus have dif-
ferent implications for policy.

We identify the causal effect of university engineering
education on the propensity to patent by using geographic
variation and over time in the possibility of obtaining a uni-
versity engineering degree. During the 1960s and 1970s,
Finnish education policies led to a large increase and geo-
graphic widening in the possibility of obtaining a university
engineering degree. We use these changes as a quasi-
natural experiment in the spirit of papers that use the dis-
tance to college as an instrument in studying the returns to
education (surveyed by Card, 2001) and of papers that use
the schooling reform implemented in all Nordic countries in
the 1960s and 1970s to study the effects of education on var-
ious outcomes (Meghir & Palme, 2005; Pekkarinen, Uusi-
talo, & Kerr, 2009). We link the individuals to the distance
to the nearest university offering engineering education and
use this as an instrumental variable for the individuals’
schooling choice. A potential problem with this identifica-
tion approach is that university location is affected by the
same unobservables as our outcome variable. As we discuss

7 In the macroeconomic literature on the relationship between education
and growth, there is some work seeking to differentiate the impact of dif-
ferent levels of education on growth. See Aghion and Howitt (1997).
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TABLE 1.—DESCRIPTIVE STATISTICS FOR THE INVENTORS AND A
RANDOM SAMPLE OF THE POPULATION
Inventors Other
Number of observations 2,328 66,530
Level of education
Upper secondary 14.4 37.8
Lowest tertiary 11.0 13.0
Lower-degree (bachelor’s) 18.0 54
Higher-degree (master’s) 354 5.2
Doctorate 13.6 0.4
Unknown 7.6 38.3
Field of education
General 5.5 4.4
Teacher education 0.3 1.9
Humanities and arts 0.6 2.0
Social science and business 2.7 11.9
Natural sciences 11.2 1.2
Engineering 65.9 222
Agriculture and forestry 1.6 34
Health and welfare 4.0 6.6
Services 0.8 8.2
Unknown 7.6 38.3
University engineering (master’s or doctorate) 33.1 2.2
Age (years) 37 39
Female 7.9 49.3
Finnish speaking 92.6 94.1
Swedish speaking 6.5 5.4
Birth cohort
1931-1950 435 51.2
1949-1960 41.3 353
1959-1964 15.2 13.5
Labor market status
Employed 95.7 83.6
Unemployed 0.6 4.1
Student 1.8 1.8
Retired 0.5 54
Other 1.5 5.1
Entrepreneur 6.4 11.9

The numbers are percentages, except for age, which is in years.

in more detail below (see section IIE), the process through
which Finnish universities’ location was determined in the
twentieth century seems to involve strong political elements
that are uncorrelated to the economic and inventive activity
of potential university locations. This suggests that it is plau-
sible to treat the location and time of establishment of (the
new technical) universities as exogenous.

Using Finnish data seems pertinent to the study of the
effect of education on invention for two reasons. First, as
documented by, for example, Trajtenberg (2001), Finland is
among the nations that have accomplished a transformation
from a resource-based to an invention-based economy. This
is reflected in the large increase in Finnish patent applica-
tions to the USPTO in the past two decades. Second, while
the increased availability of higher education is a wide-
spread phenomenon among the developed countries, this
development in Finland is different from that in other coun-
tries in two respects. The first one is the scope of this
change: the proportion of a cohort to whom there are higher
education study places is among the highest in the world
(OECD, 2008). The second is that the Finnish enlargement
of the higher education sector has had a strong emphasis on
increasing the availability of engineering education. During
the 1950s to 1970s, three new universities offering engi-
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FiGURE 2—USPTO PATENTS AND ENGINEERING STUDENT INTAKE AT UNIVERSITIES
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The USPTO patent series is for 1981 to 2007 and the engineering student intake series for 1951 to 1977.

neering education were established in different regions of
Finland to complement the two established technical uni-
versities. The share of engineering in higher education has
traditionally been quite high in Finland. In 1950, engineer-
ing students accounted for about 15% of all new university
students. While this share fell between 1950 and 1965 to
9%, there was renewed focus with the establishment of the
universities, and the share moved back up to 15% by 1981.
By way of contrast, in the United States, the proportion of
graduate students studying engineering was around 5% be-
tween 1975 and 2005 (NSF, 2006, table 1). Among OECD
countries, Finland stands out as the one with the highest
emphasis on engineering: 27% of the Finnish working-age
population with a tertiary education has a degree in engi-
neering, whereas the OECD average is 15% (OECD, 2008).
Given that engineering is the form of higher education that
is most directly targeted toward industrial R&D, one could
view the Finnish education policy as an experiment whose
individual-level treatment effect we seek to identify and
from which other countries may learn.

To demonstrate these facts further, we show in figure 2
the number of USPTO patents, and the annual intake of
engineering students at Finnish universities. Note that the
two highly correlated graphs (correlation coefficient 0.98)
are from different periods: The patent series is from 1981 to
2007 and the intake of engineering students from 1951 to
1977. While the (choice of) timing of the time series is
obviously open to criticism,® it demonstrates that at the
aggregate level, there is some reason to think that there
could be a relationship between a policy that was imple-
mented from the 1950s to the 1970s and outcomes mea-
sured in the 1990s.

By way of preview of our results, our Wald estimates that
use the (different changes over time in the) regional varia-
tion in the distance to the nearest technical university show
a positive treatment effect. In the IV estimations, the first-

8 The qualitative message of the figure is robust to different timing
choices. Naturally, the figure implies nothing about causality.
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stage results show that the distance to the nearest university
offering engineering is a good predictor for getting such
degree. The estimated effect of a university engineering
degree on individuals’ propensity to patent is positive and
significant, with a coefficient of 0.15 (0.3 for the patent
count). This is about 2.5 times as large as the OLS estimate.
We thus find a strong negative selection bias in the OLS
estimations. The direction of the bias suggests that the costs
of education to an individual are driving selection and
therefore that lowering the barriers (in particular, reducing
distance-related costs) to university education may be an
effective policy tool in attracting to formal (tertiary, engi-
neering) education inventive individuals who would other-
wise have chosen something else.” We find some evidence
that the estimated treatment effect is the average treatment
effect on the treated instead of a local average treatment
effect. Our back-of-the-envelope counterfactual calculation,
where we look at what would have happened if the new
engineering universities had not been established, shows
that the number of USPTO patents assigned to Finnish
inventors would have declined by some 20%.

We proceed as follows. In section II, we describe the data
and discuss the politics of Finnish university location. In
section III, we present the empirical framework and discuss
the identification strategy. In section IV, we present the
results, including robustness tests designed to check
whether our results are sensitive to omitted variables that
are correlated with both university location and inventive
outcomes and to the functional form used for the instrument
in the first-stage regression. Section V contains the counter-
factual analysis and section VI the conclusions.

II. Data and Descriptive Analysis

A. Data

Our data come from several sources. Information on
inventors and USPTO patents comes from the NBER patents
and citations data file described in Hall, Jaffe, and Trajten-
berg (2002). We match these data to the Finnish Linked
Employer-Employee data of Statistics Finland (FLEED), a
register-based data set that contains detailed information on
the population of Finnish working-age individuals and their
employers.'® Third, we use the Finnish 1970 census to add
information on the parents of the individuals in our sample.
Finally, we match the patent data to data on the universities
and student intake in engineering in the years 1950 to 1981,
obtained from the Finnish Educational Establishment Statis-
tics, and obtain a matrix of intermunicipality driving dis-
tances from the Finnish Road Administration.

° That is, we identify the (weighted) local average treatment effect on
the “compliers,” those individuals who were prompted to enter university
engineering education by a shift in the instrument we use. See chapter 25
in Cameron and Trivedi (2005) or section 6.3.2 in Imbens and Wool-
dridge (2008).

19 The FLEED is described in Korkeamiki and Kyyri (2000).
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Briefly, the process of matching the inventors from the
patent records to FLEED was as follows.'' To identify the
individuals, the information contained in the patent records
(name of individual, and address, at least the municipality,
at which the individual resided at the time) was used to
search the Finnish Population Information System for the
identification codes of individuals who matched these data.
In case there was more than one match, we picked the indi-
vidual whose employer’s name in the FLEED matched the
patent assignee in the USPTO data (at the time of applica-
tion). If this process failed to identify a single individual,
we excluded such individuals from our data. Out of the
8,065 inventor-patent records we were able to match 5,905,
consisting of 3,253 individuals.

The Finnish Educational Establishment Statistics are
available for each year from 1945 onward. They contain
information on all the higher education establishments,
including the type of the establishment and fields of educa-
tion, size (by number of students), and geographical coordi-
nates. We concentrate on engineering education at universi-
ties because the inventors in our data are predominantly, if
unsurprisingly, engineers with a university degree.'> We
also conduct the analysis, however, using engineering educa-
tion in general (including college-level engineering) and
general university education as alternative measures of edu-
cation. For each individual, we measure the distance from
each engineering establishment (in the year of the indivi-
dual’s eighteenth birthday, to represent the relevant year of
making the schooling choice) to the individual’s birth-
place.'® The distances we use are road driving distances from
the Finnish Road Administration. We also measure the stu-
dent intake in each of the establishments relative to the size
of the potential applicant cohort as an alternative measure.

B. The Sample

To construct the sample, we take a cross-section of indi-
viduals in the year 1988, who were born between 1932 and
1963. These individuals made their schooling choices in the
years 1950 to 1981, under the assumption that they did so
when they were 18 years old. In addition to all the indivi-
duals identified as inventors in the time period 1988 to 1996
(2,328 inventors), our data include a random sample of
working-aged individuals (noninventors) from the FLEED,
which contains the full Finnish working-age population.'*

' The matching process is described in more detail in Toivanen and
Viindnen (2012).

2 In Finland, a university engineering degree is a five-year master’s
degree. Engineering colleges offered a four-year degree that is equivalent
to a bachelor’s degree (there was a reform of universities in Finland in the
mid-1990s, and now the degrees are somewhat different). There is also a
large fraction of college engineers in the data; thus, we use both defini-
tions in our analysis.

13 Municipality of residence at the time of the schooling choice would be
preferred but is unavailable.

% Our data contain no foreign-born individuals, and we can therefore
link every individual in the sample to his or her father and the father’s
education.
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Ficure 3—HisToGRAM OF THE PATENT COUNT FOR THE SAMPLE OF INVENTORS
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We take a 5% random sample from the 1988 cross-section
for our analysis, after which we keep the observations for
individuals born between 1932 and 1963. Our sampling
weights are the inverse of the sampling probability (1/0.05),
that is, a weight of 20 for each of the control observations.
Thus, the sampling procedure we use is choice-based sam-
pling, with separate random samples for observations with
Y=0andY > 0.

C. Descriptive Statistics

Table 1 shows the means, measured in 1988, for the key
variables for inventors—individuals who were inventors in
a patent applied in any of the years 1988 to 1996, as well as
for a random sample of the Finnish working-age population.
The table shows that there are several characteristics
according to which the inventors are different from the rest
of the working-age population. They are more likely to be
men (only 7% are women); they are highly educated—
much more likely to have completed their high school
matriculation and have a university education (a bachelor’s,
master’s, or doctoral degree); and they are more likely to
have their education in the fields of natural sciences and
engineering. Finally, we note that they are particularly
likely to be university-educated engineers (33% of inven-
tors compared to 3% of the random sample).

In figure 3 we present histograms of the number of
patents per inventor over the period 1988 to 1996. The great
majority of the inventors (60%) have just one patent over
the full time period, about 20% have two patents and very
few have more than five patents.

Next, we explore the association between different types
of education and patent output and run an OLS regression
with 46 dummies for the level-field combinations of educa-
tion. We use weights in the regression to adjust for the sam-
pling procedure. As control variables, we include in our
estimating equation indicator variables for gender, national-
ity (Finnish, foreign), language (Finnish, Swedish, other),
and birth year. While most coefficients are small in absolute
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TABLE 2.—OLS COEFFICIENTS OF FIELDS OF EDUCATION

Upper Secondary Lowest Tertiary Bachelor’s Master’s Doctorate
Teacher education —0.003%*%* —0.001%%* —0.002%%* —0.003%%%* —0.003%%**
0.000 0.001 0.000 0.000 0.001
Humanities and arts —0.002%%*%* —0.003%#* —0.003%#* —0.002%%** —0.003%#*
0.001 0.000 0.000 0.001 0.001
Social science and business —0.002%%*%* —0.002%** —0.002%%** —0.003%%#* —0.004#**
0.000 0.000 0.001 0.000 0.000
Natural sciences 0.000 —0.004%%** —0.001 0.043%%%* 0.145%#%*
0.003 0.000 0.001 0.006 0.026
Engineering —0.003%##* 0.006%** 0.026%#* 0.0937%#% 0.29 1%
0.000 0.001 0.003 0.007 0.050
Agriculture and forestry —0.0047#%** —0.004#** —0.0047#** 0.004* 0.040%*
0.000 0.000 0.000 0.002 0.024
Health and welfare —0.002%%*%* —0.002%** —0.001 0.003* 0.105%#%*
0.000 0.000 0.001 0.001 0.025
Services —0.003%*%* —0.003%%** —0.003%%* —0.004%%** 0.044
0.000 0.001 0.001 0.001 0.064

The dependent variable is the sum of patents of individual 7 in the period 1988 to 1996 (Patent Count) obtained by this individual. The table shows the estimated coefficient and standard error. Significant at
#5519, **5%, *10%. In all specifications, the control variables include gender, nationality, native tongue, and cohort dummies. The base category is general education.

FIGURE 4—NUMBER OF NEW ENGINEERING STUDENTS AT EACH OF THE UNIVERSITIES
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size, we find significant and large differences between dif-
ferent fields and levels of education. Table 2 shows the
coefficients of the education dummies from the OLS regres-
sion. We see that engineering education has a positive sig-
nificant coefficient at all levels of education but the lowest,
with the magnitude increasing with the level of education."
At the master’s and the doctoral level, the coefficients for
the natural sciences are large and significant. At the doc-
toral level, the coefficient of the health and welfare field is
also large and significant.

D. Data on Engineering Education

In this section we present the data we use to generate our
instrumental variable. Figure 4 shows a graph of the number
of new engineering students in each of the Finnish universi-
ties that offered engineering education during the period
1945 to 1981. In 1945, two universities were offering engi-
neering education, both in southern Finland: the largest one

'3 Here it is interesting to note that according to the NSF (2009, chap.
3), in the United States 53% of individuals who hold a science and engi-
neering degree and report R&D as a major work activity have a bache-
lor’s degree as their highest degree. Only 12% have doctorates.

in Helsinki (TKK) on the; south coast'® and a small Swedish-
speaking one in Turku (Abo Akademi) in the southwest cor-
ner of the country. Together they had just over 400 new stu-
dents starting that year. In 1959, the University of Oulu
(over 600 kilometers from Helsinki) in northern Finland
began to offer engineering education, followed by Tampere
in southern Finland (176 kilometers from Helsinki) in 1965
and Lappeenranta in eastern Finland (221 kilometers from
Helsinki) in 1969."7 From 1960, there has been rapid growth
in the total number of new engineering students at universi-
ties, tripling from 600 to 1,800 in less than twenty years.
While the Helsinki University of Technology doubled its
student intake in engineering in the period 1945 to 1981, the
universities in the other regions also grew significantly.

In figure 5, we show the Finnish map, with the locations
of the technical universities and their distance to Helsinki
highlighted. The figure demonstrates how the establishment
of the new universities changed considerably—even allow-
ing for the fact that the Finnish population is concentrated
in the south and southwestern parts of the country—the dis-
tance to the nearest technical university for a large majority
of the Finnish population.'”® The distance between the

16 TKK moved from Helsinki to neighboring Espoo starting in the late
1950s. The move was completed in 1966. The capital region of Finland
consists of several independent cities and municipalities, the two largest
of which are Helsinki and Espoo. This move obviously had only a very
minor impact on the distance to the nearest technical university.

'7 Other universities, not offering an engineering education, were also
established in cities shown on the map in figure 5. Jyviskyld’s teacher’s
college obtained the right to grant doctoral degrees in 1944 and established
the Faculty of Philosophy in 1958. The planned University of Eastern Fin-
land was initially split into three, one of which is the technical university
in Lappeenranta: the University of Joensuu was established in 1970 and
the University of Kuopio in 1972. These two merged in 2010. The Univer-
sity of Vaasa on the west coast was established in 1968 and started to offer
an engineering education in 1988 (too late to affect the educational choices
of the individuals in our sample). Finally, the University of Lapland was
established in Rovaniemi in 1979.

'8 This concentration has increased over time. In 1960, the three south-
ern/southwestern regions (/ddni) of Uusimaa, Turun ja Porin l4éni, and
Himeen lddni housed 47% of the population. In 1996, the figure was
54%.
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FIGURE 5—MAP OF FINLAND, WITH LOCATIONS OF ENGINEERING UNIVERSITIES AND
DisTANCES TO HELSINKI
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Universities that did not offer engineering education before 1988 were established in Jyviskyld
(1944), Vaasa (1968), Kuopio (1972), Joensuu (1970), and Rovaniemi (1979).

“old” technical universities in Helsinki and Turku is 165
kilometers. The new technical universities in Tampere,
Lappeenranta, and Oulu are clearly inland, to the east, and
north of the old technical universities. Our instrument
builds to a large extent on this geographic and over-time
variation in where university-level engineering education
was available.

A potential weakness of this instrument is that the loca-
tion of universities is not random.'® We next discuss the
processes through which the locations and time of establish-
ment of different universities were determined.

E. Location Decisions of the New Universities

The first Finnish technical university was established in
the capital, Helsinki, in 1909 where the only university
already resided. However, already since the mid-ninteenth
century, there has been a heated discussion on where out-
side Helsinki to locate a new university (Tommila, 2002).
The discussion revolved around four points: the need for
new universities; the choice between general, multidisci-
plinary universities and more specialized (e.g. technical)
universities; the need to centralize or decentralize univer-
sity education; and the language question, referring to the
then-dominance of the minority Swedish language in
higher education. As early as in the 1850s, suggestions
were made to split the University of Helsinki and relocate
its parts around the country. Essentially all major cities
expressed interest sooner or later, and local associations

' This goes back to at least Marshall (1890): “When an industry has
thus chosen a locality for itself ... the mysteries of the trade become no
mysteries; but are as it were in the air, and children learn many of them
unconsciously.”
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were established with the aim of influencing the university
location decisions.?

The process through which Abo Akademi in 1918 (when
it was established) got a technical faculty provides a paral-
lel for postwar decision making. To the very end, it was
unclear which faculties would be included, but finally, the
technical faculty was among them, despite resistance from
the technical university in Helsinki and disagreement
among the founders.

More important for our exercise, the establishment of the
engineering faculty at the University of Oulu and the tech-
nical university in Lappeenranta provides a window into
the determinants of location.”! A committee for the estab-
lishment of a university in northern Finland suggested Oulu
as the location in 1956, with a plan for starting with facul-
ties of philosophy, engineering, and medicine. The Ministry
of Trade and Industry fiercely opposed the establishment of
an engineering faculty, as did the Technical University in
Helsinki. In the end, the committee’s suggestion prevailed
in this respect (Eskola, 2002a).

The Technical University in Lappeenranta was born out
of a complicated political process. There was more or less
agreement that eastern Finland needed a university, but that
is where the agreement ended. All major cities in the region
lobbied to be chosen. A committee suggested in 1961 that a
university should be established in Lappeenranta with
faculties of engineering and humanities. The committee
was, however split, with Lappeenranta getting four, Kuopio
three, and Joensuu one vote, and with one member abstain-
ing from the vote and disagreeing with the suggestion
(Eskola, 2002b). Kuopio, Joensuu, and the city of Savon-
linna started a heavy lobbying process to influence the gov-
ernment, and in the same year, a suggestion was made to
split the university. A committee was established. It sub-
mitted three reports and concluded that “the committee has
been unable to find justifications for preferring one location
over the others.”*? The committee suggested establishing a
technical university in Lappeenranta (and in Tampere), with
other faculties going to other cities. Lappeenranta lobbied
to get the entire university and the other cities for Lappeen-
ranta to get nothing. The government was openly split on
the matter, with the prime minister backing the committee’s
proposal and the minister of education opposing it. Finally
the government voted and decided to establish three univer-
sities—one each in Kuopio (founded in 1972), Joensuu
(1970), and Lappeenranta (1969), with the last one getting
the technical university. The process was thus long and of

20 To mention just one suggestion, a prominent participant in the discus-
sion suggested in 1917 that the new university should be split between the
cities of Turku, Tampere, Jyvaskyld, Lahti, Viipuri, and Oulu. Today all
but Lahti (and Viipuri, which was lost to the Soviet Union in World War
II) have a university. Several cities with university associations failed to
get a university (e.g., Hamina, Rauma, and Hdmeenlinna).

Here we lean heavily on the apparently aptly named chapter “The
Fight over the University of Eastern Finland” (Eskola, 2002b), in Tom-
mila and Tiitta (2002).

22 See Eskola (2002b, p- 238) (our translation).
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uncertain duration, erratic, and the decision unclear to the
very end.

No discussion of invention in Finland is complete without
discussing Nokia. Most of Nokia’s R&D is located in Hel-
sinki and Oulu. Whereas it is clear that the technical univer-
sity in Helsinki was established well before Nokia’s move
into electronics, one may wonder whether the company’s
location in Oulu provides evidence countering our assump-
tion of university location being exogenous to inventive
activities. However, evidence provided by Oinas-Kukkonen
et al. (2005) suggests otherwise. According to Oinas-Kukkonen
et al., the Institute for Information Processing Science was
established at the University of Oulu in 1968—1969. Professor
Matti Otala joined the university from Nokia in 1967, and the
first Nokia factory in Oulu was established in 1974. It thus
seems that while a major part of the human capital that drew
Nokia to Oulu had a Nokia connection (Otala), it was the
human capital at the university that drew Nokia to Oulu rather
than the other way around.”?

One way to check whether university location is driven
by underlying differences in inventiveness is to look at dif-
ferential trends in enrollment to engineering studies at uni-
versity locations as opposed to other locations (farther
away) before the establishment of the university. We
checked this for Oulu. It turned out that enrollment from
the Oulu area to university engineering studies was practi-
cally zero prior to the establishment of the University of
Oulu and the simultaneous establishment of the engineering
faculty. This suggests that there was no nascent engineering
trend in Oulu that would have led to the government’s
choosing Oulu as the location.

Given this background, it seems to us that the decision of
whether a city got a university, or whether the university
ended up providing engineering education seems to have
been open to the very end of each process. Furthermore, the
durations of the decision-making processes seem to have
been highly uncertain. It also seems that in the end, the deci-
sion was largely determined not by economic and technical
issues but for political reasons. We therefore think that it is
reasonable to treat the location and year of establishment of
(technical) universities as exogenous in our analysis.

III. The Empirical Framework

We estimate the effect of engineering higher education
on individuals’ inventiveness, as measured by their total
patent output (USPTO patents by application date) over the
period 1988 to 1996. We use a linear specification and esti-
mate equations of the following form:

Y; = o+ BX; + OENG; + ¢. (D

23 As a final note on Nokia, we cannot check the robustness of our
results to removing Nokia employees from the sample because we cannot
identify individual companies in the data. The problem with the alterna-
tive approach, which is to form a group of large R&D firms and interact
this dummy with the instrument, is that job placement is endogenous.
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Y; is our output measure (a 0/1 indicator for patents granted
to individual i, sum of patents granted to individual i, or
citations received by the patents of individual i), X; are con-
trol variables describing the individual (gender, cohort
dummies, native tongue), and ENG; is an indicator equal to
1 if the individual has obtained a university engineering
degree (master’s or doctorate) by the year 1988. 0 is the key
parameter of interest, measuring the (weighted) local aver-
age treatment effect (see Imbens & Wooldridge, 2008) of
engineering education on inventive output, and 3 is a vector
of parameters on the control variables.

The error term in equation (1) may be correlated with the
schooling measure and patents due to, for example, omitted
variables related to unobserved individual ability, as in esti-
mating the returns to schooling. However, it is not clear ex
ante what the direction of the omitted variable bias is
because the unobserved ability affecting the propensity to
patent (individual’s inventiveness) is not necessarily posi-
tively correlated with the ability that is typically thought to
increase an individual’s net benefits from schooling. In
other words, individuals with low (effort) costs of studying
could on average be less good at creative thinking that leads
to invention, leading to a negative correlation and down-
ward bias in the OLS estimate.

In addition, there may be an issue of essential heteroge-
neity or selection on gains, which generates positive corre-
lation between schooling and the error term. If engineering
higher education increases the propensity to patent, but
mainly for individuals with innate inventive ability, then
those individuals have a higher additional benefit of school-
ing in terms of their increased propensity to patent and are
thus more likely to choose such schooling.

We apply instrumental variables for the individuals’
schooling choice and identify the (weighted) local average
treatment effect (LATE) for individuals who are affected
by the instruments we use. We discuss our identification
strategy and our instrumental variables in the next section.

A. Identification

We borrow the idea of using (time-varying) geographic
variation from the literature that uses educational reforms
to estimate, for example, the returns to education (Card,
2001; Meghir & Palme, 2005). Moretti (2004) uses the
establishment of land grant colleges in the nineteenth-
century United States to estimate human capital spillovers
using 1980s data. The quasi-experiment we use is the
growth of the Finnish university-level engineering educa-
tion system that took place between 1950 and 1981. This
variation allows us to adopt an instrumental variable
approach.

Individuals choose their education by evaluating the
costs and benefits of the alternatives. We use instruments
generated from exogenous factors that affect individual’s
cost of choosing an engineering education. Using indivi-
duals’ birth year and place, we determine the distance to
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and availability of university engineering education. These
measures correspond to institutional variations on the supply
side of the education system and are typical of the kind of
instrumental variables used in the recent literature studying
the effects of schooling choices on labor market outcomes
(Card, 2001).24 We combine distance-based instruments
(geographical variation) with cohort-based instruments
(over-time variation).

Our instrumental variable is based on distance, which
exogenously generates variation in individuals’ mobility
costs. Individuals, depending on where they live, face dif-
ferent costs of traveling or moving to a town where engi-
neering education is offered. Our identifying assumption is
thus that the distance between the location of an individual
and the nearest technical university affects the probability
of obtaining a university-level engineering degree, but does
not directly affect the propensity to patent (or the quality of
the patents, measured by citations).

This instrument mainly has geographical variation, but
there is also some variation over cohorts, as three new uni-
versities are founded at different times during the time per-
iod. When using a location-based instrument, it is important
to control for other factors that are correlated with the loca-
tion. For example, families living in or near university towns
are different from those living in smaller towns and rural
areas, and family background can influence both schooling
and inventiveness. We control for the level and field of the
father’s education at a very detailed level, measured in the
year 1970, the first year for which such data are available.”
Our measure of father’s education has two dimensions: field
of education and level of education. Regarding the former,
we have eight types of education, ranging from humanities
and arts to agriculture and forestry. Regarding the latter, we
have up to six levels of education for each type of education,
ranging from lower secondary to doctorate or equivalent.
We observe father’s education for 56% of the estimation
sample. We present the descriptive statistics on father’s edu-
cation in the online appendix.

The treatment effect we identify is LATE for individuals
affected by the instruments we use. As our instruments gen-
erate variation in the costs of choosing university engineer-
ing education, the individuals affected by the instrument are
those who are at the margin of choosing university engi-
neering education over some other schooling choice. It is
important to note that it is unclear what the relevant coun-
terfactual is—that is, what the individuals would have cho-
sen had they not chosen university engineering education.
We can only make a guess that the relevant next best choice

24 Kelchtermans and Verboven (2010) and Frenette (2009) study choice
of higher education institutions. The former use a funding reform in Bel-
gium (Flanders) and the latter the establishment of new universities in
Canada. Both studies find that distance plays an important role in the
choice of what to study and where.

5 Unfortunately, we know neither the identity of the university an indi-
vidual attended nor the locations of the relatives of individuals; hence, we
cannot control for an individual having relatives in a particular university
city.
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for this group is either a lower-level engineering degree or
a university degree in some other field.

The LATE we identify is a relevant variable from the
policy point of view. Viewing our instruments as being
generated by variation in government educational policy,
we are identifying the effect of this policy, to the extent
that the policy can be represented by the location of
universities.

IV. Results

We estimate the effect of university engineering educa-
tion on individuals’ propensity to patent, measured by the
sum of their USPTO patent output over the time period
1988 to 1996. We begin by presenting simple difference
and Wald estimates of the establishment of the three new
universities in the provinces where they were established.
We then move on to the regression analysis.

A. Wald Estimates

Table 3 presents simple difference and Wald estimates of
the establishment of the three new universities in the pro-
vinces where the universities were established. The benefit
of the Wald estimates is that they use in a straightforward
manner the differential variation over time in the availabil-
ity of university engineering education at different loca-
tions. For each province, we look at groups of nine birth
cohorts before the establishment of the university and the
nine cohorts after. As a comparison, we always look at the
Uusimaa province (where the nation’s largest technical uni-
versity existed throughout the period) over the same time
period.26 We report the fraction of the cohort of 18-year-
olds born in the province who are inventors (i.e., obtain a
USPTO patent between 1988 and 1996) and engineers
(higher-level college or university engineering degree)
before and after the establishment of the university.

In panel A, we look at the Pohjois-Pohjanmaa province
(for the years before 1950 to 1958 and after 1960 to 1968),
where a technical university was established in Oulu in
1959. The fraction of engineers increases from 0.7% to
2.2%, while the fraction of inventors increases from 0.04%
to 0.19%. During the same period, there is also rapid
growth in the fraction of engineers in the Uusimaa cohorts
(as Helsinki University of Technology also experienced an
increase in student intake), from 3.4% to 5.7%, and the
fraction of inventors goes up from 0.18% to 0.27%. The
Wald estimate of 0.09 for Pohjois-Pohjanmaa indicates that
about one-tenth of the engineers became inventors. For
Uusimaa, the estimate is only about half the size, around
0.04. Thus for Uusimaa, where the initial level of engineers
is higher, further increases appear to produce fewer inven-
tors on average.

26 The Uusimaa estimate is thus not a Wald estimate, as the instrument
(i.e., distance to the nearest technical university) does not change.
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TABLE 3.—WALD ESTIMATES

Panel A 1950-1958 1960-1968 Difference Wald
Pohjois-Pohjanmaa
Cohort size 22,367 31,660
Inventors 10 59
0.0004% 0.0019% 0.0014%
Engineers 163 706
0.0073% 0.0223% 0.0150% 0.0944%
Uusimaa
Cohort size 23,107 50,135
Inventors 42 139
0.0018% 0.0028% 0.0010%
Engineers 794 2,866
0.0344 0.0572 0.0228 0.0419
Panel B 1956-1964 1966-1974 Difference Wald
Pirkanmaa
Cobhort size 29,088 34,142
Inventors 53 96
0.0018 0.0028 0.0010
Engineers 890 1,365
0.0306 0.0400 0.0094 0.1055
Uusimaa
Cohort size 39,089 55,728
Inventors 107 138
0.0027 0.0025 —0.0003
Engineers 2,127 2,692
0.0544 0.0483 —0.0061 0.0427
Panel C 1960-1968 1970-1978 Difference Wald
Eteld-Karjala
Cobhort size 13,769 13,857
Inventors 14 22
0.0010 0.0016 0.0006
Engineers 466 571
0.0338 0.0412 0.0074 0.0775
Uusimaa
Cobhort size 50,135 58,019
Inventors 139 155
0.0028 0.0027 —0.0001
Engineers 2,866 3,025
0.0572 0.0521 —0.0050 0.0201

The table shows the fraction of the cohort who are inventors and engineers both before and after the “treatment” of the establishment of a technical university in the province. In column 3, it presents the change in
these, and in column 4th Wald estimate. Uusimaa province, where a technical university existed throughout the period, serves as the comparison group in each case. All estimates are given in both number and percent.

Looking at Pirkanmaa province (panel B) and the years
1956 to 1964 (before) and 1966 to 1974 (after the establish-
ment of the technical university in Tampere), there is a rela-
tively modest increase in the number of engineers (there
already was an engineering college in Tampere before the Uni-
versity was established), but the increase in inventors is larger
(in percentage terms). The resulting Wald estimate is 0.10
(notably similar to the figure for Pohjois-Pohjanmaa). For the
same period for cohorts born in Uusimaa, the fraction of engi-
neers in fact decreased, as did the fraction of inventors. The
estimate is very similar to the one in the earlier period (0.04).

Finally, looking at Eteld-Karjala before and after the
establishment of the technical university in Lappeenranta
(panel C), we get a Wald estimate of 0.08, and for the same
period comparison, the estimate for Uusimaa (where again
both the fraction of engineers as well as the fraction of
inventors decreased) is 0.02.

Altogether these results suggest that the increase in the
number of engineers born in the provinces where new tech-
nical universities were established, obtaining their degree

around the time of the establishment, is associated with lar-
ger increases in the number of inventors (born in these pro-
vinces) than the increase of inventors for cohorts born in
Uusimaa, where a university already existed and the initial
level was already high.

B. Regression Analysis

We run our estimations for three (second-stage) dependent
variables (patent count, patent dummy, expected citations)
and for three measures of education (engineering education,
technical university education, and university education).
Furthermore, we run these specifications with two sets of
control variables (with and without father’s education).

OLS estimations. Table 4 presents the estimated coeffi-
cients from the OLS estimations for our key variable of
interest: a dummy variable indicating the type of education.
The first column shows the results from the estimations
based on a larger sample without controlling for family
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TaBLE 6—IV ESTIMATES

No Family With Father’s No Family With Father’s
Background Education Background Education
Patent count Patent count
University engineering 0.110%%*%* 0.118%%#%* University engineering 0.234#5#% 0.302%*
(0.007) (0.009) (0.038) (0.15)
Engineering 0.0591%** 0.0628%%** Engineering 0.136%#* 0.106%%#%*
(0.003) (0.004) (0.021) (0.041)
University 0.0316%** 0.0348%%*%* University 0.067%%*%* 0.202%%*
(0.002) (0.002) (0.009) (0.104)
Patent indicator Patent indicator
University engineering 0.0493#%* 0.0517%#%%* University engineering 0.108 %% 0.155%%*
(0.003) (0.003) (0.015) (0.068)
Engineering 0.02827%%*%* 0.0296%%*%* Engineering 0.063 %% 0.054 %%
(0.001) (0.001) (0.009) (0.017)
University 0.0144%** 0.0156%%** University 0.030%#* 0.093%#%*
(0.001) (0.001) (0.004) (0.045)
Citations Citations
University engineering 1.179%%%* 1.350%%* University engineering 2.322%%% 2.592
(0.101) (0.132) (0.438) (1.787)
Engineering 0.618%%** 0.357%#%%* Engineering 1.347%#%%* 0.907*
(0.045) (0.029) (0.249) (0.558)
University 0.313%%%* 0.707%*%* University 0.736%** 2.137*
(0.021) (0.059) (0.117) (1.213)
Numbers of observations 60,234 33,645 Numbers of observations 60,234 33,645
The dependent variable is the sum of patents of individual 7 in the period 1988 to 1996 (patent count), Control variables
an indicator for individual i obtaining at least one patent from 1988 to 1996 (patent indicator), or the cita- Father’s education No Yes
tions to the patents obtained by individual i. The table shows the estimated coefficient and the standard Regional dummies No No

error in parentheses.*** Significant at 1%. In all specifications, the control variables are gender, national-
ity, native tongue, and cohort dummies. Father’s education is included as 45 dummies representing edu-
cational field-level combinations.

TABLE 5—FIRST-STAGE ESTIMATES

No Family With Father’s
Background Education
University engineering —0.262%%* —0.161%**
(0.029) (0.061)
Engineering —0.452%%%* —0.461%%*
(0.047) (0.096)
University —1.08%*%%* —0.378%%*
(0.08) (0.169)
Number of observations 60,234 33,645

The table shows the estimated coefficient and the associated standard errors in parentheses. Significant
at ###1%, **5% level. Coefficients and standard errors have been multiplied by a factor of 100. The
instrument is distance to the nearest technical university when the dependent variable is either the indica-
tor for a university engineering degree or an engineering degree and distance to the nearest university
when the dependent variable is a university degree. In all specifications, the control variables are gender,
nationality, native tongue, and cohort dummies. Father’s education is included as 45 dummies represent-
ing educational field-level combinations.

background and the second column from the estimations
with father’s education included as a control (45 dummies
for field-level combinations of education). This sample is
smaller, as father’s education is not available for all indivi-
duals. The smaller sample is also somewhat different with
regard to the ages of the individuals, as for the older
cohorts, it is more likely that the father was no longer alive
in 1970 when we observe father’s education.

The OLS regressions show, throughout the different spe-
cifications, that education, in particular university-level
engineering education, has a positive and significant asso-
ciation with patenting. For the patent count as our depen-
dent variable (the top panel in table 4), the coefficients on
university engineering education range from 0.110 (SE,
0.007) to 0.118 (SE, of 0.009). The coefficients for engi-
neering education in general (including college-educated
engineers) are only about half this, and those for university

The table shows the estimated coefficient and the associated standard errors in parentheses. Significant
at ##*%1 %, **5%, *10%. In all specifications, the control variables are gender, nationality, native tongue,
and cohort dummies. Father’s education is included as 45 dummies representing educational field-level
combinations.

education in general are even smaller. When using either a
patent dummy (middle panel in table 4) or citations as the
dependent variable (the lower panel in table 4), we obtain
results that mirror the previous ones.

As discussed earlier, the endogeneity bias in the OLS
estimates could be in either direction. This is what we
investigate next using instrumental variables.

1V estimations. In the instrumental variable regressions,
the results of which are reported in tables 5 and 6, we use
the distance to the nearest university offering an engineer-
ing degree as our instrumental variable affecting the choice
of engineering education. For the effect of university educa-
tion in general, the instrumental variable is the distance to
the nearest university (including universities that do not
offer engineering degrees). Table 5 presents the estimated
coefficients (and associated standard errors below) on the
instrumental variable in explaining the individual’s educa-
tion type (first stage). Table 6 presents the IV estimates of
the coefficients on the education dummy from the regres-
sions on patent output. Similarly to the previous table, the
first column shows the results from the estimations based
on the larger sample without controlling for family back-
ground and the second column from the estimations includ-
ing the 45 indicator variables for father’s education.

Looking at columns 1 and 2 in table 5, we see that the
distance to the nearest technical university has a significant
negative effect on choosing such schooling, as expected.
The coefficients on the distance (in 100 kilometers) are
—0.0026 (without father’s education) and —0.0016 (with



392

father’s education) for university engineering education.
Given the average probability of choosing such education
(0.022), this translates into about a 10% increase in the prob-
ability as distance decreases by 100 kilometers. We also see
that our instrument is quite strong in both specifications,
although somewhat reduced by controlling for father’s edu-
cation. Part of this reduction in the strength of the instrument
is also due to the smaller sample in the regression with
father’s education; in the appendix we present the first-stage
robust F-tests for the different samples and specifications. In
the robustness section, we further probe the validity of the
instrument and the effect of using polynomials of different
order for the instrument in the first stage.

Table 6 presents the estimation results from the second
stage of the IV estimations (i.e., the patenting equation). The
estimated coefficients throughout the different specifications
are 2 to 2.5 times the respective OLS estimates. This result
could indicate a negative selection bias, meaning that those
who have a high innate propensity for invention have a lower
propensity to study at a technical university. This interpreta-
tion is, in a sense, in line with the instrument we use and the
treatment effect we identify. Individuals who are induced to
obtain a university-level engineering education as a result of
the proximity of a university (our instrument) are at the mar-
gin and thus not those who have the highest net benefits. A
cost-based explanation would be that among those with the
same distance to the university, the ones with a lower cost of
attending (larger shock in the first-stage participation equa-
tion) are less likely to invent (smaller shock in the second-
stage invention equation). The LATE we identify is for the
portion of the population affected by these distance-related
mobility costs. From the specification in column 2 for the
effect of university engineering education, the coefficient of
0.3 indicates that inducing individuals to choose this kind of
education due to its proximity (affected by the establishment
of the new universities) leads to increases in patent output;
about three university engineers are needed to produce one
extra patent.27 Finally, if our instrument does not satisfy the
exclusion restriction, the negative OLS bias would mean that
the Marshallian co-location story is at work: those close to
the university are more likely to invent regardless of whether
they obtain an engineering degree.

Comparing the results across dependent variables reveals
that the pattern discovered in the OLS estimations is repli-
cated here, with the patent indicator yielding the smallest
coefficients and the citation count the largest. When one
compares the results across specifications, it is clear that the
statistical significance of the estimated treatment effect
tends to decline as we include the vector of father’s educa-
tion dummies as control variables. Finally, when comparing
the three endogenous dependent variables (= measures of

*7 We have checked that the difference in the samples between is not
driving the differences in coefficients in columns 1 and 2 of table 6. When
estimating the base specification (without controls for father’s education)
using the sample for which father’s education is observed, we get results
very similar to those reported in column 1.
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education), it is worth pointing out that the relative sizes of
the coefficients are well in line with what the OLS estimates
already suggested, with university engineering yielding the
largest treatment effect estimate. The relative size of the
engineering and the university education coefficients
depends on whether we control for father’s education: with-
out controlling for it (column 1), the engineering coefficient
is larger, whereas the university education coefficient is lar-
ger once father’s education is controlled for.

An additional interesting finding concerns gender differ-
ences in inventive productivity. While the OLS estimates
show a strong negative association between female gender and
patent output, this effect disappears once the endogeneity of
engineering education is taken into account.”® A large major-
ity of the engineers are men. This suggests that the observed
gender difference in patent productivity is simply due to the
different types of education chosen by women and men.

Robustness tests. We also performed a number of
robustness tests. First, we introduced an interaction term
between distance and father’s education (a dummy equal to
1 if the father has a university degree and O otherwise). If
better educated-fathers’ offspring are differentially affected
by distance, this instrument should capture that effect. The
second-stage point estimates are very close to those
reported, as are the significance levels.

Second, we included dummies for the twenty regions
(maakunta) in Finland. These should capture unobservables
that are correlated with inventiveness and university loca-
tion, thereby ameliorating worries that omitted variable bias
(or endogeneity of university location) affects our results.
We added these region dummies to our specification that
includes the vector of father’s education dummies. A pro-
blem with the region dummies is that they reduce the signif-
icance of our distance instrument as they by design are cor-
related with it.>> We display the results in the appendix for
all combinations of education and invention output. We
found that while our instrument loses power when we use
university engineering education as our education variable
(the first-stage F-test is 1.513; see table A.2, column 1), the
results using either engineering education or university edu-
cation are in line with those in table 6. The coefficient for
engineering education is 0.185 (SE, 0.088; see table A.3,
column 1) and for university education 0.157 (SE, 0.068;
see table A.4, column 1), with first-stage F-test values
above 7. The former is a little larger, the latter a little smal-
ler than those in column 2 of table 6 where father’s educa-

%8 This is the case when we use university engineering or engineering
education. When we use university education, the female dummy obtains
a small negative and statistically significant coefficient (Coefficient,
—0.006; SE, 0.001).

A substantial part is due to our sample decreasing when we introduce
further controls. The region dummies in general do not perform well, with
most of them obtaining small and highly insignificant coefficients. As an
example, when we regress the number of patents on university engineer-
ing education, none of the region dummies obtains a statistically signifi-
cant coefficient in the second stage.
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tion was already controlled for. Our results thus seem rea-
sonably robust to introducing further regional controls.*

As a final robustness check regarding location, we clus-
tered the standard errors at the municipal level. This pro-
duced standard errors that were very close to the robust
standard errors.

We then turned to the issue of what functional form to
use for the instrument. To study this, we estimated all mod-
els in table 6 using a polynomial of the distance instrument
and varying the order of the polynomial from 1 to 8. The
results are reported in the appendix for all combinations of
invention and education measures, polynomials of the
instrument, and all three specifications (base specification,
adding father’s education, and adding region dummies). We
repeated the exercise using the natural logarithm of distance
and report the results using all three education measures
and the patent count as the measure of invention. With the
base specification, the first-stage F'-test is always high, and
the education coefficients from the different instrument spe-
cifications are very close to each other. We see a slight
decrease in education coefficient size when the order of the
polynomial is increased. As an example, with university
engineering as the measure of education and the patent
count as the measure of invention, the coefficient goes from
0.136 with a first-order polynomial to 0.128 with an eight-
order polynomial. When we add father’s education and
region dummies, the higher-order polynomials do not pass
the Stock-Yogo weak instrument test; however, the educa-
tion coefficients and their statistical significance are
remarkably stable. As a whole, the results using higher-
order polynomials repeat the results using only a linear
instrument: using engineering and university education con-
sistently yields a significant second-stage coefficient for all
three specifications (base, adding father’s education, and
adding region dummies), while the coefficient(s) using uni-
versity education lose statistical significance when region
dummies are introduced. Using the natural log of distance
(or its higher-order polynomials) yields very similar results
as using linear distance. We conclude that our results are
robust to the functional form of the instrument.”'

In addition to these robustness checks, we attempted to
use another instrument based on the student intake into
technical universities and estimate a model where we
allowed a separate effect for engineering and other univer-
sity-level education, instrumenting the latter with distance
to the nearest university. The new instruments proved to be
weak, and we therefore do not report these exercises here.

C. Tests for Heterogeneous Effects

We test for heterogeneous treatment effects using a test
suggested by Heckman, Schmierer, and Urzua (2009). We

30 We repeated this exercise for the other two invention variables,
with very similar results.

3! We again repeated this exercise for the other two invention variables,
with very similar results.
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TaBLE 7—TEsTs oF HETEROGENEOUS TREATMENT EFFECTS

No Interactions With Interactions

p-Value p-Value
Second order 0.805 0.926
Third order 0.725 0.32

The table shows the p-values of the joint significance (F-) tests. In all specifications, the control vari-
ables are gender, nationality, native tongue, and cohort dummies. Father’s education is included as 45
dummies representing educational field-level combinations. In column 2, we interact the instrument and
its powers with nationality and native tongue dummies.

first run a probit regression to estimate the propensity score
of having a university engineering degree. We use the same
set of control variables as in our main specification, includ-
ing father’s education. We then include a polynomial of this
propensity score, together with interactions of it with some
of the controls, and test for nonlinearity of these terms. The
results for a variety of specifications of the polynomial,
reported in table 7, suggest that we cannot reject the null
hypothesis of a homogeneous treatment effect.

The implication of accepting the test results would be
that the treatment effect we have estimated is the average
treatment effect on the treated, not the (weighted), local
average treatment effect. That would obviously alter, and
make stronger, our policy conclusions. We return to this
below in the counterfactual analysis. Our reading of the
results is that we have some, but no overwhelming, evi-
dence in favor of our estimate being an average treatment
effect on the treated.

D. Discussion

Taken together, the analysis suggests that by increasing
the geographic availability of university engineering educa-
tion, Finland enticed young people to enter engineering
education, ultimately making them more likely to patent.
The negative selection bias that we report suggests that a
feature of the policy may have been to entice “non-
standard” (more inventive) individuals to enter into engi-
neering higher education or that variation in costs (condi-
tional on distance) drive selection.

Returning back to our Wald estimates, the finding of
higher Wald estimates for the provinces where new univer-
sities were established is in line with the finding of an IV
estimate that exceeds the OLS coefficient. The IV based on
the distance to the nearest technical university derives its
variation from the over-time and across-region variation
due to the establishment of the new universities, the same
variation used to calculate the simple Wald estimates. In
fact, the magnitudes of the Wald estimates are also similar
to the IV estimates (from the specifications with the patent
dummy as the dependent variable). Also, the relative mag-
nitudes are similar: The Wald estimates in each of the pro-
vinces are about twice as large as that for Uusimaa in the
same time period (roughly by how much the IV estimate
exceeds the OLS). Note that the Uusimaa (Helsinki Univer-
sity of Technology) estimates are OLS estimates, as (in
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contrast to the other provinces) there is no change in the
distance to nearest technical university.

A potential problem with our identification approach is
that university location is affected by the same unobserva-
bles as our outcome variable. As we discuss in section IIE,
the process through which Finnish universities’ location
was determined in the twentieth century seems to involve
strong political elements that are uncorrelated to the eco-
nomic and inventive activity of potential university loca-
tions. This suggests that it is plausible to treat the location
and time of establishment of (the new technical) universi-
ties as exogenous.

V. Counterfactual Analysis

Finally, we perform a counterfactual calculation (in the
spirit of Ichimura & Taber, 2000, 2002), of total patent out-
put in 1988 to 1996 had the three new technical universities
not been established. We do this by estimating the main
equation (patent count as the outcome), now including the
distance to the nearest technical university as a direct
explanatory variable. We calculate the predictions in the
actual scenario (and sum them over all the individuals) and
compare them to the scenario where everyone’s distance is
replaced by the distance to the technical university in Hel-
sinki (Espoo, TKK). A comparison of the two scenarios
using our specification with father’s education included
shows a predicted decrease in patent output of 19% without
the establishment of the three new technical universities,
meaning a 23% increase due to new universities. Specifica-
tions with different polynomials of the instrument show
slightly smaller counterfactual reductions in patent output
ranging from 12% to 19%, translating into increases
between 14% and 19%.

A key question is what lesson our results, taken at face
value, offer to policymakers. The central message that
arises suggests that reducing the hurdles to university-level
engineering education may indeed lead to an increase in
inventive output. How then to achieve a lowering of the
costs of an engineering education? It is not clear at all from
our results that reducing the distance is the right policy tool
everywhere, even though it seems to have worked in the
postwar Finnish environment. Here, the different interpreta-
tions of the estimated treatment effect lead to different
implications. If the estimate is an average treatment effect
on the treated, the choice of the policy instrument is of
much less significance. Any policy that leads to an increase
in engineers will lead to 0.2 to 0.3 patents more per every
new engineer. If instead the estimate is a local average
treatment effect, then this increase in patenting will be
obtained only if the implemented policy changes the beha-
vior of the same part of the cohort choosing what to study,
as the Finnish policy affected in the postwar period.
Whether this will be the case is much harder to assess.

Finally, notice that our counterfactual analysis is back-
of-the-envelope because we have not estimated a structural
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model. We thus do not know what the general equilibrium
effects of the adopted policy were, or what would have hap-
pened if it had not been implemented. For example, our
analysis does not shed light on what those individuals
would have done who, because of the implemented policy,
chose engineering education. It is possible that they could
have contributed more to GDP growth in the alternative
scenario even if they would have contributed less to Finnish
patenting at the USPTO.

V1. Conclusion

Paraphrasing Jones (2005, p. 1107), the question we
address is: Can we, through educational investments,
increase the number of inventors, and thereby make us all
richer? Furthermore, does this happen through selection or
through a treatment effect? Evidence based on macrolevel
studies provides at best weak evidence of a causal effect of
education on growth (Krueger & Lindahl, 2001), although
Aghion et al. (2009), using U.S. state-level data, find evi-
dence of a positive effect of education on growth. To
address the question directly at the microlevel, we study the
link between education and invention, using a matched data
set on Finnish inventors of U.S. patents for 1988 to 1996.

We find a strong positive (causal) effect of engineering
education on the propensity to patent. We use a supply-side
instrument—distance to the nearest engineering university
as our instrument—generated from the Finnish educational
policies of the period 1950 to 1981, the years in which the
individuals in our sample chose their education. The first-
stage result, that distance negatively affects individuals’
choices, indicates that the educational policy of increasing
the geographic availability of engineering education
worked, in the sense that it increased the probability that
individuals from the nearby regions would enter university
engineering education. The interesting result is not only that
the instrumental variable estimate is positive and signifi-
cant, but also that the OLS bias is negative, indicating that
inventive individuals may not be the typical people who
would obtain a university (engineering) education, or that
costs of attending university (conditional on distance) are
driving selection. Our answer to the policy question is thus
affirmative: yes, the number of inventors can be increased
through educational policy, and the effect is not due to
selection but to treatment. Our counterfactual exercise sug-
gests that if Finland had not established the new engineer-
ing universities in the postwar era, the number of USPTO
patents obtained by Finnish inventors would have been
20% lower.

Our results provide a potential explanation for the trans-
formation of the Finnish economy, noted, for example, by
Trajtenberg (2001) and analyzed by Honkapohja, Koskela,
Leibfritz, and Uusitalo (2009), from a resource-based to an
innovation-based economy. They also provide a potential
basis for the widely adopted educational policies in coun-
tries like China and India that have invested heavily in
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increasing science and engineering education and to the
recent U.S. worries about losing its comparative advantage
in this regard. Nevertheless, we stress that the result (of us
having identified an average treatment effect) leading to the
policy conclusion that any policy that increases the number
of engineering students also increases invention rests on
relatively thin evidence. The effect of engineering educa-
tion on invention may well be context and policy specific
and thus not possible to generalize beyond the case exam-
ined here.
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