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1 Introduction

Developing countries continue to bear a high share of the global infectious disease bur-

den despite a number of large-scale interventions. This is particularly true in the case of

malaria where, while there has been a rapid decline over the last decade, Sub-Saharan

Africa accounts for approximately 90% of malaria-related deaths (WHO, 2015). Given that

there may be substantial positive externalities associated with prevention of infectious dis-

eases, an effective public health policy is crucial and this warrants a better understanding

of individual demand for preventive health products.

Notwithstanding the substantial benefits, investments in health products remain low in

developing countries (Dupas, 2011; Thurber et al., 2013). With financial constraints being

one of the primary reasons for low uptake, the current debate has centered on the extent

of subsidy - whether such health products should be provided for free or at some cost to

the users (Sachs, 2005; Dupas, 2014). On the one hand, concerns over free provision

include the cost of heavy subsidization, provision of wrong incentives in product usage,

and the possibility that it might lead to expectations of free provision in the future. On

the other hand, the neediest are often unable to afford even highly subsidized products.

Further, households with inadequate resources may be forced to choose between protecting

economically valuable members and others (Strauss and Thomas, 1995; Mwabu, 2007).

One element missing from this discussion has been the possible role of concurrent income

generating policies in easing these trade-offs. In this paper, we contribute to the literature

by examining how a large-scale agricultural development intervention in Uganda reduced

malaria, and if the most vulnerable members of the household benefit more from such

interventions.

While many scholars believe that low income can increase malaria incidence (Berthélemy

et al., 2013; Worrall et al. 2005) by limiting households’ capacity to buy bednets, ensure

adequate nutritional intake, and gain access to health care, causally testing this channel is a

challenge due to reverse causality. In particular, malaria-related morbidity can reduce earn-

ings through decreased labor productivity and workdays lost to disease (Fink and Masiye,

2015; World Bank, 2008). Existing studies that are closest to ours focus on interventions to

relax credit constraints specifically for the purchase of preventive health products.1 How-

ever, health product linked cash grants, by making health salient, could encourage take-up

1More general studies exploit exogenous variations in household income to identify effects on health.
For example, Duflo (2003) finds that an expansion in the coverage of the pension program in South Africa
improved health outcomes for girls. Conversely, negative income shocks due to economic crises (Paxson and
Schady, 2005), weather shocks (Jensen, 2000) or declines in output prices are found to adversely affect health
(see Strauss and Thomas, 2007 for an overview).
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and thus overestimate the effect of income, and there is little evidence of the effect of a

general increase in income on malaria (Dupas, 2011).

This paper tests if income generating programs in agriculture can play a role in malaria

reduction. This is of tremendous policy relevance given that agriculture is the dominant

source of income in Sub-Saharan Africa. In particular, we exploit an arbitrary distance-to-

branch threshold that determines village eligibility for a large-scale agricultural extension

program operated by BRAC Uganda, to causally identify the effects on malaria and explore

possible channels. Using a regression discontinuity framework, we find that the agricultural

extension program led to a reduction in prevalence of malaria in Uganda. For households

residing in eligible villages, household level malaria prevalence (proportion of household

members affected) reduced by 8.9 percentage points (or 29% of the control mean). Further,

we observe substantial reductions in the prevalence of malaria are for children under 5, the

most vulnerable group in the population. While there are no gender differences, pregnant

women experience considerable reduction in malaria as well. These findings are robust to

a number of checks standard in the literature. As exposure to health shocks in early life can

have considerable economic losses over time, our finding that the program reduced malaria

prevalence among pregnant women and children under 5 indicates that the extension ser-

vices program is associated with substantial and potentially lifelong benefits that are not

accounted for in standard cost-benefit analyses.

Upon carefully examining the underlying channels, we find an increase in income and bed-

net ownership to be among the possible explanations for this decline in malaria. While

pre-intervention information indicates no discontinuity in income and bednet ownership,

access to the agricultural extension services program increased both. Further highlighting

the role of income in malaria reduction, we find that these effects are driven by program ef-

fects in areas that were poorer in the pre-intervention period. Lastly, we also examine and

discuss several alternative mechanisms such as discontinuous access to various forms of

health care, demand for health care and health-related information, agricultural practices,

female bargaining power, fertility and mortality.

In sum, this paper makes the following key contributions. First, we contribute to the litera-

ture on the adoption of preventive health technologies by highlighting the role of financial

constraints. Overall, liquidity is found to be an important factor constraining household in-

vestment in preventive health products (Devoto et al., 2012; Beltramo et al., 2015; Mered-

ith et al., 2013; Guyatt et al., 2002). In the context of malaria prevention, sleeping under

an insecticide treated bednet (ITN) is considered to be highly effective but usage remains

low. Several empirical studies trace the low uptake of ITNs to financial constraints faced

by low income households. For example, in an experimental setting in Uganda, Hoffmann
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et al. (2009) estimate that the income elasticity of the willingness to pay for an ITN is

high (0.25) and find that it is the lack of cash, rather than a low willingness to pay the

market price, that explains the low demand for bednets.2 While this study and others such

as Dupas (2009) and Tarozzi et al. (2014) relaxed the credit constraint specifically for the

purchase of preventive health products (for example, micro-loans for bednets or the provi-

sion of free/subsidized bednets), there is little evidence of the effect of a general increase

in income on preventive health investments (Dupas, 2011; Dupas and Miguel, 2017).3 We

fill this gap as we find that access to an agricultural extension program translated into re-

duction in malaria prevalence through an improvement in economic status and an increase

in the number of bednets owned per capita.

Second, this research is linked to the literature on the intra-household allocation of health

resources (see Strauss et al., 2000 and Mwabu, 2007 for recent overviews). Particularly, the

distribution of bednets within households with few bednets is of considerable importance as

households might have to decide between protecting those that are economically important

(working-age adults) and those that biologically require more protection due to naturally

lower immunity (children and pregnant women). Previous evidence from Uganda suggests

that adults may receive priority over children in households with few bednets (Lam et al.,

2014; Hoffmann, 2009). This paper sheds further light on this as our results indicate that

exposure to the agricultural extension program (and the resulting easing of the income

constraint) led to greater allocation of bednets to children.

Finally, while the possibility that an increase in the income generating capacity of agricul-

ture can reduce malaria rates has been discussed widely in the literature (Asxenso-Okyere

et al., 2011; World Bank, 2008; van der Hoek, 2004; Ijumba and Lindsay, 2001), causal

identification has been challenging due to concerns related to omitted variable bias and

reverse causality. We contribute towards filling this gap with evidence from a large-scale

agricultural extension program that provides agricultural training and easier access and af-

fordability of high yield variety seeds with the ultimate objective of improving food security

and helping households graduate out of poverty.

The rest of the paper is organized as follows. Section 2 provides a background on malaria

in Uganda and BRAC’s agricultural extension program. Section 3 describes the data and

outlines the estimation strategy. The main regression results on malaria are provided in

Section 4. Section 5 explores the underlying mechanisms and Section 6 concludes.

2In related work, Cohen and Dupas (2010) find the demand for bednets to be highly price elastic. See
Dupas (2011) for a review of the literature on health seeking behavior in developing countries.

3While there is some evidence of unconditional cash transfers on health (Baird et al., 2012; Haushofer
and Shapiro, 2016), the effects of an income generating program - where income is earned and increases
more permanent - may be different (Dasgupta and Mani, 2015).
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2 Background

2.1 Malaria in Uganda

Plasmodium falciparum, the most deadly of the five human malaria parasites, is endemic in

Uganda. Malaria spreads to people through the bites of infected female mosquitoes with the

most common malaria transmitting vectors in Uganda being Anopheles Gambiae. Malaria is

endemic in Uganda with over 90% of the population experiencing high transmission rates

and malaria incidence, 232 cases per 1,000 population, is one of the highest in the world

(WHO, 2015). Further, endemicity of malaria is quite stable - there are very few areas of

unstable transmission and epidemics are uncommon. There is some amount of cyclicity

as malaria incidence peaks during the two rainy seasons (March to May and September to

December). In Uganda, Hoffmann et al. (2009) estimate the economic costs of a malaria

episode - medical cost and the value of labor income lost - to be $17.85 (or 7.2% of the

average annual per capita non-health consumption expenditure). Further, the burden of

malaria is disproportionately borne by poor households, largely due to the fact that they

are unable to invest in malaria prevention methods such as bednets (UBOS and ICF, 2012;

Uganda Ministry of Health, 2008).

The strategies to combat malaria are coordinated by the Uganda National Malaria Con-

trol Program (NMCP) and largely center around increasing the availability and usage of

ITNs through a mix of commercial sale (full and subsidized prices) and free distribution to

vulnerable groups (such as pregnant women through antenatal clinics). According to the

Uganda Malaria Indicator Survey in 2009, the most common way of obtaining a bednet

was through the open market, shops and pharmacies (UBOS and ICF Macro, 2010). While

households’ access to bednets has increased rapidly over the last decade, the proportion

of population sleeping under a bednet is still low. The Uganda DHS, 2011 estimated that

74% of households reported owning at least one bednet but only 45% of the population

had slept under a bednet the night preceding the survey.

Another strategy for vector control is to spray insecticide on the interior walls of a dwelling.

According to the Uganda DHS in 2011, 7.2% of the households reported having had their

houses sprayed in 2010-2011 (UBOS and ICF, 2012). While the overall use of indoor resid-

ual spraying (IRS) is low due to cost considerations, the government has from time to time

funded regional mass spraying. An early experimentation with mass IRS took place in the

southwestern district of Kigezi in 1959-61, but these efforts were not scaled up (Uganda

Ministry of Health, 2008; Barofsky et al., 2015). More recently, a similar IRS program has

been supported by the President’s Malaria Initiative (PMI) and the Government of Uganda
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in 10 districts in the Northern Region of Uganda from October 2009 onwards (PMI, 2013).

The survey data used in this study do not overlap with any of these districts.4

2.2 BRAC’s agricultural extension program

Agricultural extension seeks to improve agricultural productivity by promoting the adoption

of modern agricultural technologies via training and demonstrations. Given the potential to

improve yields, decrease production cost, increase incomes and reduce poverty, agricultural

extension programs have become a popular form of agricultural intervention in developing

countries (Godtland et al., 2004; Kassie et al., 2010; Dercon et al., 2009; World Bank,

2008).

BRAC’s agricultural extension program in Uganda was launched in 2008 and operated

through 60 branches in 41 districts.5 The program aims to increase the productivity of

small, low-income women farmers by encouraging the adoption of modern cultivation tech-

niques. This was done through two complementary arms - one provided agricultural train-

ing and the other improved access to inputs. In the first component, “model farmers” were

selected, trained in modern cultivation techniques and then required to pass on that train-

ing to other peer farmers in the village. In the second component, community agriculture

promoters (CAP) were selected from the same villages and provided subsidized HYV seeds

to sell in their villages. There was no cap on the selling price and the objective was to

increase the availability of HYV seeds in the village and at the same time help improve the

entrepreneurial skills of the CAP. Between 2008 and June 2011, the program had engaged

1200 “model farmers” and reached almost 64,000 general farmers.6

The agricultural extension program was limited to villages lying within a radius of 6 km

from each BRAC branch office as BRAC chose to evaluate the program using a spatial re-

gression discontinuity design. In an effort to balance concerns regarding transportation

costs for program assistants and trying to reach enough farmers, BRAC selected the 6 km

boundary for the pilot. This threshold was later incorporated into the actual agricultural

extension program and was implemented regardless of geography or population density.

The program was effective in increasing the adoption of modern cultivation techniques and

4The 10 districts covered are Kitgum, Agago, Lamwo, Pader, Amuru, Nwoya, Gulu, Oyam, Kole, and Apac.
Household coverage is reported to be about 90% in these districts (PMI, 2013).

5BRAC branch offices are located closer to towns rather than villages for easy access to communication,
transportation and financial services. As the BRAC branch offices were set up well before the design and
implementation of the agricultural program, the locations can be considered pre-determined and viewed as
exogenous to the potential benefits of the agricultural extension services program.

6As the objective was to reach as many households as possible, most of the branches do not overlap their
service area and the average distance between branches is 28 km.
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inputs that require minimal upfront monetary investment such as inter-cropping, crop ro-

tation and the use of manure. This in turn translated into significant improvements in food

security (Pan et al., 2018).

3 Data and estimation strategy

3.1 Data

The data used in this paper come from BRAC’s agriculture survey conducted in July- Decem-

ber 2011, 3 years after the launch of the extension program. The survey used a two-stage

cluster sampling process. First, in each of the counties that received the program, 17 vil-

lages were picked from the list of villages in a radius of 9 km around a branch. Next, in each

of the selected villages, 25 households were randomly chosen for the survey. Figure A1 in

the online Appendix depicts the survey areas. The household survey collected information

on all the usual members of the household including whether the member had suffered

from malaria in the preceding six months. Other characteristics used in the analysis are

the age and literacy of the household head, and a dummy variable indicating whether any

member of the household is a member of a village level (or higher) committee. Finally, we

also have the GPS coordinates of households which allows us to calculate the distance of

the household and village from the nearest BRAC branch.

While surveyed villages were to lie within a radius of 9 km, in the data we observe a few

villages that are further away. This is possibly due to measurement error in sampling or

recording the GPS coordinates of the households. For the purpose of this analysis we choose

to restrict the sample to villages lying within 10 km of a BRAC branch.7 The summary

statistics, reported in table 1, show that the sample consists of 7206 households residing in

417 villages. The household head is on average 43.7 years old and 73.2% are literate. At

the household level we define household malaria prevalence as the proportion of household

members who reported experiencing malaria in the six months preceding the survey. The

average household malaria prevalence is 28.7%, and there is considerable heterogeneity

at the individual level with malaria prevalence being highest for children aged 5 or below

(50%). While malaria prevalence is fairly similar across genders, 40% of pregnant women

reported experiencing malaria in the six months preceding the survey.

Admittedly, self-reported prevalence of malaria may suffer from measurement error. Self-

7While we use data of villages lying within 10 km, all non-parametric results reported in Tables 2-10 are
robust to restricting the data to only villages that lie within a radius of 9 km.
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reported malaria may be both under-reported or over-reported.8 While imperfect, Tarozzi

et al. (2014) find self-reported malaria to be strongly correlated with rapid diagnostic blood

tests (RDTs) in India. Relating our self-reported measure to two clinically tested malaria

prevalence rates available for Uganda during the period of the study gives us reasonable

confidence in our measure. First, the self-reported measure relates closely to the clinical

malaria prevalence rates estimated among children aged 2-10 years in Uganda during 2011

by the Malaria Atlas Project (Bhatt et al., 2015). For the set of overlapping districts, malaria

prevalence is estimated to be 31% by the Malaria Atlas Project while it is 39% in the BRAC

survey data for the same age group, and at the district level we find a correlation of 0.66

between the two samples. Second, the Malaria Indicator Survey of 2009 tested children

aged 0-59 months for the malaria parasite through two technologies - microscopy testing

and RDT. While microscopy testing found 45% of children to be infected, RDTs found preva-

lence to be 55% (UBOS and ICF Macro, 2010). Although the BRAC survey data are from

2011 and refer to a six month recall period, we also find a high prevalence of malaria among

children aged 5 or below (50%).

3.2 Estimation strategy

The nature of the implementation of BRAC’s agricultural extension program provides us

an opportunity to assess its effect on the prevalence of malaria using a “sharp” regression

discontinuity (RD) design. As per BRAC’s rules, coverage under the program was limited

to villages within the radius of 6 km of each BRAC branch office, making access to the agri-

cultural extension program a discontinuous function of a continuous variable (distance to

the nearest BRAC branch office). For every village, we computed each household’s distance

from the nearest BRAC branch using GPS coordinates and then used the median house-

hold’s distance as a proxy for the distance of the village from the nearest BRAC branch. The

running variable, z j, is then defined as the distance of the village in kilometers from the

cutoff point of 6 km:

z j = d j − 6 (1)

where d j is the distance of the village j from the BRAC branch. A village should have

8For example, under-reporting may occur due to asymptomatic incidence arising from repeated exposure
to malaria (Laishram et al., 2012). Similarly, fever episodes maybe misdiagnosed as malaria leading to over-
reporting. Still, self-reported prevalence may reflect episodes that were severe enough to be recognized by
the household and serve as a valuable indicator of the economic burden of the disease (Tarozzi et al. 2014).
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received the extension program if z j ≤ 0. As we restrict the data to villages lying within 10

km of each BRAC branch for the analysis, the running variable lies in the range [-6, 4]. Our

RD model can be written as:

Yi j = α+ βT j + f
�

z j

�

+ εi j (2)

where, Yi j is the outcome of interest for household i in village j. As discussed above, the

running variable z j is the distance of the village from the cutoff point. T j is a dummy variable

that equals one if the household resides in a village below the cutoff point (z j ≤ 0) and zero

otherwise. We also include a flexible control function of the running variable f
�

z j

�

, that is

allowed to differ on either side of the cutoff. The coefficient of interest, β captures the effect

of being eligible for the agriculture extension program on the outcome - the “intent-to-treat”

(ITT) effect. The analysis includes any spillovers within the village.

Correctly modelling the control function is one of the main issues in RD design. Our primary

approach is the non-parametric one suggested by Hahn, Todd and Van der Klaauw (2001)

and Porter (2003). We use local linear regressions to estimate the left and right limits of

the discontinuity at the cutoff of 6 km, and the difference between the two limits indicates

the effect of being eligible for the agricultural extension program on the outcome. Thus,

the ITT effect is non-parametrically identified as:

β = l imz↑0E[Y |zi = z]− l imz↓0E[Y |zi = z] (3)

The choice of the bandwidth can also play an important role in non-parametric estimations.

The method suggested by Imbens and Kalyanaraman (2012) gives us an optimal bandwidth

of 2.01 km for the primary outcome of interest (household malaria prevalence), whereas

the alternative method suggested by Calonico, Cattaneo and Titiunik (2014) gives a similar

optimal bandwidth of 1.99 km. Further, the optimal bandwidth may vary with the outcome

variable and the sample size. As this may lead to unnecessary confusion, we fix our band-

width to 2 km and then check the sensitivity of our results for the alternative bandwidths of

1.5 km and 3 km. We use a triangular kernel in order to give higher weights to points nearer

to the threshold and compute standard errors that are robust to within-cluster correlation

at village level (Imbens and Lemieux, 2008; Calonico et al., 2017).

While our primary estimates are based on non-parametric estimations, we also check the
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sensitivity of our results by modelling the control function as global second-order polynomi-

als.9 More specifically, we run the following reduced form regressions that allow quadratic

trends to differ on either side of the threshold:

Yi j = α+ βT j +λ1z j +λ2z2
j +λ3T jz j +λ4T jz

2
j + εi j (4)

where, once again β captures the effect of eligibility for the program and the error terms

are clustered at the village level.

We do not use a “fuzzy” RD design to estimate the local average treatment effects of the pro-

gram as we have limited information on actual program participation. While the program

was launched in 2008, from our survey we can only identify if a household received BRAC’s

extension services in the six months preceding the survey in 2011 - and not the whole pro-

gram period. The program was implemented more intensively at the start and therefore,

program activities in the six months proceeding the survey would only provide a noisy (and

an underestimated) measure of actual program participation. Therefore, throughout the

paper we estimate ITT effects using a “sharp” RD design.

Before proceeding to the analysis, we assess the validity of the RD design in the following

ways. To begin with, we check for manipulation of the running variable at the point of

discontinuity. Figure 1 shows the number of households in each 0.1 km bin plotted against

the distance of the village to the cutoff. If the households selectively moved in order to be

eligible for the extension services program then it would lead to bunching just below the

threshold. Figure 1 indicates the absence of such manipulation. More formally, using the

McCrary (2008) density test we are unable to reject the null hypothesis of no discontinuity

in the density of households at the cutoff.

Next, using both pre-treatment and post-treatment data, we examine if households on either

side of the threshold are similar on a variety of characteristics. First, using the BRAC survey

we check for discontinuities in covariates such as age and literacy of the household head,

and presence of a committee member in the household vary smoothly around the cutoff. In

Figure A2 in the online Appendix, we plot the mean of these covariates in each 0.1 km bin

against the distance to the cutoff. Also plotted is the local polynomial fit on each side of the

discontinuity separately. A visual inspection does not indicate any substantial discontinuity

at the cutoff point. A standard way to formally test for smoothness at the cutoff is to perform

9Both the bin regressions method and the Akaike information criteria suggested by Lee and Lemieux
(2010) indicate that the optimal order of the polynomial is two. Recent research also recommends limiting
RD analysis to quadratic polynomials (Gelman and Imbens, 2018).
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‘placebo’ tests by estimating the reduced form using the covariates as the outcome variables.

As the results presented in Panel A of Table 2 show, we do not observe any discontinuity in

these covariates.

Second, while BRAC did not conduct a baseline survey, we use data from the Uganda Na-

tional Household Survey 2005-06 (UNHS) to provide further evidence that households on

either side of the threshold were similar before the implementation of the BRAC program.

Combining GPS coordinates collected under UNHS 2005-06 and those of BRAC branches,

we determine distance of households to the nearest BRAC branch and conduct the same

‘placebo’ tests using a bandwidth of 2 km around the cutoff. These results are presented in

Panel B of Table 2. Although the sample is smaller, we find credible evidence that house-

holds on either side of the threshold were similar on a variety of key indicators before the

introduction of the program. Households do not differ in terms of log value of agricultural

production per capita (proxy for household income) and household level malaria preva-

lence (proportion of household members reporting malaria during 30 days preceding the

survey). Households also do not differ significantly in terms of their investments in pre-

ventive healthcare in the pre-intervention period, as proxied by the probability that the

household owns at least one bednet, the log of value of bednets owned per captia, and a

dummy variable that takes the value one if all members of the household own at least one

pair of shoes.

Throughout the paper we check if the results are robust to the inclusion of covariates from

the BRAC survey. In addition to age and literacy of the household head, and presence

of a committee member in the household mentioned above, we also include the household

distance to BRAC branch office (as a proxy for market access). We also control for the month

of survey as it can affect the prevalence of malaria, and for the gender of the respondent to

account for the possibility that women may be more knowledgeable about malaria episodes

and bednet usage in the family.10,11

We are particularly interested in the effects of the agricultural intervention on the preva-

lence of malaria for young children and pregnant women, the most vulnerable groups. But

it is possible that access to the agricultural extension program could have led to an en-

dogenous change in the fertility decisions of households. However, we do not think this

is a concern as we do not find a discontinuity in the probability that at least one member

10Survey respondents were asked to recall malaria episodes for the last six months and given the typi-
cal rainy seasons of March-May and September-December, this implies that in all the survey months (July-
December) the malaria recall period overlaped equally with three rainy months. 92% of the survey respon-
dents were males.

11The sample size falls with the inclusion of controls. For robustness we check if the estimates are similar
when estimating treatment effects without covariates with the sample restricted to households with informa-
tion on all controls. The results are reported in Tables A5-A9 in the online Appendix.
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of the household was pregnant at the time of the survey (β=0.017, s.e.=0.01). Another

assumption for identification is the absence of selective attrition due to death. In our data

we find that less than 3% of households reported a death in the six months preceding the

survey and all the results on malaria prevalence that follow continue to hold if we exclude

households that reported a death.12 Lastly, while the survey targeted 25 households per

village, the average village survey non-participation rate is 30%. However, within our pre-

ferred bandwidth of 2 km we do not find the village level survey non-participation rate to be

correlated with access to treatment (24% in treatment vs. 26% in control, p−value=0.74),

mitigating concerns that survey non-response is biasing the results.

4 Results

We begin with providing evidence of the discontinuity in actual participation in BRAC’s

agricultural extension program. We then go on to present the primary results on prevalence

of malaria at the household level before exploring heterogeneity in the treatment effects by

different age groups and gender.

4.1 Discontinuity in actual program participation

First we address the question whether the probability of coverage under BRAC’s agricultural

extension program was discontinuous at the 6 km cutoff. For this purpose we define a

program activity indicator takes the value of 1 if at least one household in the village reports

receiving BRAC’s agricultural extension program (either training from a model farmer or

purchased seeds from a CAP), and 0 otherwise. Program activity is defined at the village

level for two reasons: (i) “model farmers” and “CAP” provided extension services to peer

farmers residing in their villages; and (ii), as discussed earlier, from our survey we can only

identify if a household received BRAC’s extension services in the six months preceding the

survey, i.e, we do not know if a household was ever treated.

The discontinuity in program activities in the six months preceding the survey is graphically

shown in Figure 2 where we plot the proportion of households that receive treatment in

each 0.1 km bin against the distance of the village from the cutoff. The figure indicates a

clear discontinuity in the coverage of the program - a jump in probability of approximately

40 percentage points at the threshold - indicating that the the program had indeed been

12The results are available from the authors.
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implemented with a spatial discontinuity.13

4.2 Effect on malaria

We begin with a discussion of the results on the prevalence of malaria at the household level.

Figure 3 illustrates the impact of residing within the radius of 6 km from a BRAC branch

on prevalence of malaria at the household level, measured as the proportion of members

who reported being infected by malaria in the previous six months. This is depicted on the

y-axis, while the x-axis measures the distance of the village from the cutoff. Also plotted is

the local polynomial fit, estimated separately on each side of the discontinuity. The figure

shows a clear jump at the cutoff, indicating that households residing in villages just below

the cutoff distance (eligible for the extension program) have a lower proportion of members

infected by malaria in the last six months.

Table 3 presents results from the formal evaluation of the agricultural extension program

on malaria around the cutoff. Column 1 reports the results from estimating the reduced

form relationship between being eligible for the program and the household level preva-

lence of malaria without controlling for any other covariates. The coefficient in column 1

indicates that, under the preferred bandwidth of 2 km, in households in eligible villages

the proportion of members infected by malaria is 8.9 percentage points lower than that for

households in ineligible villages. Given a control mean of 0.302, this translates into a 29%

reduction.14

We perform a variety of tests to check the robustness of this result. First, we check if the

baseline results are sensitive to the inclusion of controls discussed in Section 3.2. This check

is presented in column 2 of Table 3 and we find that this does not alter the magnitude

or significance of the ITT estimates. Second, we show that the result is robust to using

alternative bandwidths of 1.5 km and 3 km (columns 3-6 of Table 3). In a finer check

of the sensitivity of our result to the choice of bandwidth, we estimate the ITT effects for

bandwidths at every increment of 0.2 km from 0.6 km to 4 km. In Figure 4 we present

the estimated effect of the extension services program on malaria prevalence and the 95

percent confidence intervals for these bandwidths. As one would expect, the precision of

13Formal tests for discontinuity in the availability of the program using local linear regressions are provided
in Table A1 in the online Appendix. The results show that households in villages less than 6 km away from
a BRAC branch are 43 percentage points more likely to be covered under the agricultural extension program
than those in residing in villages further away. This result is also robust to the inclusion of controls discussed
in Section 3.2 and changes in bandwidth.

14Alternatively, one could measure the prevalence of malaria at the household level with a dummy variable
that takes the value of 1 if at least one member of the household reports being infected by malaria and 0
otherwise. Our result is robust to this measure: the ITT estimate (s.e.) is -0.111 (0.029).
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the estimate increases with bandwidth. Overall, the figure clearly indicates that our primary

finding is not sensitive to the choice of bandwidth.

As stated earlier in Section 3.2, parametric regressions may be viewed as a further robust-

ness check to the non-parametric results presented here. We estimate the reduced form

using a quadratic polynomial specification where the coefficients of the polynomials are

allowed to differ on either side of the cutoff (equation 4). The results are presented in

column 1 of Table A2 in the online Appendix and are similar to those obtained for the

non-parametric method.

It should be noted that the ITT estimates of the effects on malaria prevalence are a lower

bound due to potential spillovers. A reduction in the density of malaria vectors (possibly due

to the use of bednets as we discuss later in Section 5.1) can generate positive externalities

for residents in the same village and neighboring villages (Hawley et al. 2003; Killeen et al.

2007; Tarozzi et al. 2014). This implies that malaria prevalence in control villages may be

lower due to positive spillovers from treatment villages near the threshold. By narrowing

the gap in malaria prevalence between treatment and control groups, this could lead to an

underestimate of the overall effect of the program.

4.3 Heterogeneity

We now undertake an individual level analysis to investigate the heterogeneity in the effects

across different age groups and gender. We particularly care about the effects on children

and working age adults because of the implications for current and future labor productiv-

ity. A substantial amount of literature finds that exposure to health shocks during pregnancy

and early life can adversely affect long-term health and economic wellbeing (Almond and

Currie, 2011). In the case of malaria, exposure to anemia - a typical manifestation - when

child is in-utero and early-life, reduces the availability of oxygen and nutrients, thereby

hampering the development of organs and cognitive capacity. Further, childhood morbid-

ity due to malaria can, in turn increase vulnerability to other diseases. Barreca (2010)

estimates that a standard deviation increase in exposure to in utero and postnatal malaria

reduced educational attainment by 0.23 years. Similarly, a number of studies use exogenous

variation in the introduction of malaria eradication programs to identify adverse effects of

early life exposure to malaria on future educational attainment and earning capacity (Cut-

ler et al., 2010; Bleakley, 2010; Lucas, 2010; Venkataramani, 2012; Barofsky et al., 2015;

Kuecken et al. 2017).

We first focus on children aged 5 or less, who are considered to be the most vulnerable
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group in terms of exposure to the disease (older cohorts acquire immunity from repeated

exposure). As the summary statistics reported in Table 1 show, we find that about 50%

of children aged 5 or below are reported to have experienced malaria in the previous six

months, which is higher than the infection rates for other age groups. The other age groups

we consider are children aged 6-19 and the working-age adults in the age group of 20-

60.

The first column in Panel A of Table 4 reports the effects on children aged 5 or less. We

find that children residing in villages eligible for the agricultural extension program are 11.2

percentage points (or 22%) less likely to report having experienced malaria in the preceding

six months. Columns 2 and 3 of Panel A of Table 4 show that there are significant reductions

for individuals in the age groups of 6-19 and 20-60 as well. While the point estimates for

these groups are smaller, we find that the effects are not statistically different across the

age groups.

On analyzing the data for males and females separately, we find significant reductions in

malaria for both groups. These results are presented in columns 4 and 5 of Panel A of

Table 4. The point estimates are similar and not statistically different from each other

(p − value=0.81), indicating minimal difference by gender. We also examine the impact

of the agricultural extension program on the malaria rates for pregnant women. While

the sample size is smaller, the results presented in the last column in Panel A of Table 4

show large, significant reductions in the prevalence of malaria for pregnant women. These

results are robust to the inclusion of controls (Panel B of Table 4); varying the bandwidth

(Table A3 in the online Appendix); and parametric estimation (columns 2-7 of Table A2

in the online Appendix). In light of the decline in mortality and morbidity associated with

reduction in utero and postnatal exposure to malaria discussed earlier, our results imply

that the agricultural extension services program could translate into significant benefits in

terms of saving lives and boosting health and incomes in the long-run.

Lastly, it is possible that there are gender differences within each age group as resource-

constrained households often make a distinction between males and females when allo-

cating resources. For example, in Uganda, Björkman-Nyqvist (2013) finds that negative

income shocks (proxied by rainfall shocks) had an adverse effect on girls’ school enroll-

ment but not on that of boys. We examine this possibility by estimating the effects for

males and females separately within each age group. In results reported in Table A4 of the

online Appendix, we find that in the 0-5 year age group, females experienced a significant

decline in malaria prevalence while males did not. However, we are unable to reject the

null of equality of coefficients between males and females (p− value=0.37). It is possible

that these effects are imprecisely estimated due to modest sample sizes. Similarly, there are
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no significant gender differences in the age groups of 6-19 and 20-60.

5 Mechanisms

5.1 Income

As discussed in Section 1, a number of papers have pointed to the possibility that improve-

ments in the income generating capacity of agriculture can reduce malaria. Recall that

using the UNHS 2005-06 pre-treatment data we did not find any difference in the value of

agricultural production (proxy for household income) between treated and control house-

holds at the threshold (Section 3.2 and column 1 of Panel B in Table 2). However, using

the BRAC data and the same RD design, we find that the agricultural extension program

increased value of agricultural production, as illustrated in Figure 5a.15 More formally, re-

sults presented in Table 5 show that three years after the start of the intervention, the value

of agricultural production per capita was approximately 27.6% higher in villages with ac-

cess to the program (columns 1-2 of Table 5). While the effects are large, it must be noted

that these are measured three years after the start of the intervention and that the primary

beneficiaries were marginalized female farmers (who generally have lesser income to begin

with). This improved economic status of the household could have reduced the prevalence

of malaria in two important ways - (i) by increasing the capacity to buy bednets and; (ii) by

improving nutritional status and immunity. We explore these channels in turn below.

First, the prevalence of malaria could decrease if the increased income resulting from the

intervention was invested in malaria prevention technologies such as bednets. Previous

surveys suggest that household income plays a role in constraining access to bednets. As

discussed earlier in Section 2.1, while the NMCP does support the distribution of some free

and subsidized bednets, the most common way of obtaining a bednet is through the open

market. The positive association between income and bednet ownership is borne out in

several surveys. For example, the Uganda DHS, 2011 finds that while 67.2% of households

in the lowest wealth quintile owned at least one bednet, 84.2% did so in the highest wealth

quintile (UBOS and ICF, 2012). BRAC’s survey collected information on the ownership of

bednets at the household level and whether each usual member of the household had slept

under a bednet the night previous to the survey.16 Note that while we have information

15Value of agricultural production is a suitable proxy for household income as a majority of household
report agriculture to be the main source of income. Engagement in formal wage employment is low (approx-
imately 5% in the sample) and does not differ significantly at the cutoff (β= 0.016, s.e.= 0.01).

16Bednets can be broadly classified into three types: untreated bednet, insecticide-treated bednets (ITNs)
and Long-lasting insecticidal bednets (LLINs). Our data do not distinguish the type of bednet used.
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regarding ownership at the household level, we have information only on usage at the

individual level. Using this information and the same estimation strategy we investigate

the plausibility of this channel.

The ITT estimates are shown in columns 3-4 of Table 5 for the preferred bandwidth of

2 km. At the household level we find that bednets owned per capita are higher by 0.08

in households residing in villages eligible for the extension program, which given a control

mean of 0.363 translates into a 22% increase. The corresponding Figure 5b shows the effect

graphically. This strongly indicates that low income is a barrier to investment in preventive

health technologies.17

We now turn to the use of bednets at individual level in Table 6. The results show that

children and adolescents (age groups 0-5 and 6-19) in villages eligible for the extension

program are 14.4 and 9.7 percentage points more likely to sleep under bednets, respectively

(Panel A, columns 1 and 2). This is in line with the sharp reduction in the prevalence of

malaria found for these age groups in Section 4.3. The positive effect on the use of bednets

is smaller and not statistically significant for adults in the age group of 20-60. Further-

more, on comparing the effects across age groups we find that the increase in bednet usage

among children aged 0-5 is significantly greater than the effects on adults (p−value=0.01).

Columns 4 and 5 of Panel A show that the increase in the use of bednets for males and fe-

males is similar (7 and 5.9 percentage points, respectively) and not statistically different

from each other (p− value=0.79). Finally, we do not find any significant effects on the use

of bednets by pregnant women (column 6). Panel B of Table 6 shows that these results are

robust to the inclusion of controls discussed in Section 3.2.

These results are important as they shed light on the intra-household allocation of health

resources when households are faced with financial constraints. Previous studies find that

in Ugandan households with limited income, children - the more biologically vulnerable

group - may not receive priority in the allocation of bednets (Lam et al., 2014 and Hoffmann,

2009). Our results are consistent with this finding as they indicate that an easing of the

income constraint led to greater usage of bednets, and a corresponding decline in malaria,

especially among children.

While an increase in the use of bednets could explain the decline in malaria prevalence for

those under the age of 20, it does not explain the significant decline noted for pregnant

women. Our hypothesis is that pregnant women in villages below the threshold bene-

fited from positive intra-household spillovers (Killeen et al., 2007). In particular pregnant

17Congruently, this result also indicates that with an increase in the opportunity cost of falling sick (due
to the income effect of the agricultural intervention), households are more willing to buy bednets in order to
avoid being sick. We discuss this further in Section 5.2.
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women are more likely to spend time in the house with young children and, given the noted

decline in malaria prevalence for children, they would therefore be less exposed to infec-

tious mosquito bites.18 We find suggestive evidence in favor of this hypothesis. On splitting

the sample of pregnant women into those residing in households with no children aged

5 or below and those residing in households with at least one child aged 5 or below, we

find that there is a significant reduction in the prevalence of malaria for pregnant women

only in the latter case (Table 7). Further giving credence to this finding, we can also rule

out the role of intermittent preventive treatment during pregnancy (IPTp). Supported by

the NMCP, IPTp is provided through antenatal clinics (ANC), involves taking at least two

doses of sulfadoxine-pyrimethamine (SP/Fansidar) during pregnancy, and has been shown

to reduce maternal malaria episodes, severe maternal anaemia, and low birth weight (see

WHO, 2015).19 We find that women who were pregnant during the survey or gave birth

in the year preceding the survey were less likely to have visited an ANC during pregnancy

(β= -0.076, s.e.=0.034).

Second, improved nutritional status of household members could reduce the prevalence

of malaria through a reduction of infections and faster recovery. The potential pathways

are deficiencies in micro-nutrients such as zinc and vitamin A that reduce the ability of the

immune system (Shankar, 2000). While we do not have information on nutritional intake,

Pan et al. (2018) find that coverage under the BRAC program not only increased per capita

consumption but also increased the variety of food consumed and reduced scarcity of food

(especially in the pre-harvest periods).

It is also possible that an increase in household income resulted in the use of other preven-

tive technologies such as indoor residual spraying (IRS). While we are unable to observe

the use of IRS, as discussed in Section 2.1, only around 7% of the households in the Uganda

DHS reported using IRS in 2011. Further, bednets continue to be the dominant technology

promoted by the Government of Uganda, NGOs and other international organizations. Sim-

ilarly, we are also unable to observe modifications made to the dwelling - closing openings

in ceilings, doors, windows and eaves with screens or other methods - in order to reduce

the indoor density of mosquitoes.

Finally, in order to further underscore the role of income in malaria reduction we use the

UNHS 2005-06 data to check heterogeneity based on pre-treatment income levels. We com-

bined GPS coordinates of BRAC branches and those of households surveyed under UNHS

2005-06 to determine the average value of agricultural production in the neighborhood of

18We thank Pascaline Dupas for pointing this out.
19According to the Uganda DHS in 2011, 27% of women reported using IPTp during their last pregnancy

(UBOS and ICF, 2012).
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each BRAC branch.20 Sorting branches by the value of agricultural production per capita,

we then classified those above median as “richer branches” and those below as “poorer

branches”. Table 8 reports the effects on household level malaria prevalence and bednet

ownership based on this classification of pre-treatment branch income level. We find that

the effects on malaria reduction and increase in bednets is driven by program effects in

poorer branches, further highlighting the importance of income in malaria reduction.

5.2 Other possible channels

We have argued that BRAC’s agricultural extension program in Uganda led to a decline in

the prevalence of malaria, likely through an increase in income and the capacity to buy bed-

nets. In this section, we discuss a variety of alternative pathways and explanations.

The most plausible alternative channel explaining our results could be that households

situated closer to BRAC branch offices have better access to health infrastructure. While

this is indeed a possibility, there is no reason to expect a discontinuity in the access to health

facilities at the arbitrary cutoff of 6 km. Nonetheless, we address this concern in a variety

of ways. Individuals who reported being sick in the 30 days preceding the BRAC survey

and sought treatment, were asked the distance of the health facility where treatment was

sought. Using the same RD design we do not find the distance to the health facility to differ

at the cutoff (β = 1.02, s.e. = 1.27). Still, as a part of our robustness checks we included

the household distance to BRAC branch office (as a proxy for market access) as one of the

control variables throughout the analysis.

BRAC also operated a primary health care program in which it trained local community

health promoters to conduct home visits, provide basic medical advice and diagnoses, pre-

natal and post-natal care to pregnant women, and sell preventive and curative health prod-

ucts. The community health promoters program was run separately and there was no in-

stitutionally mandated discontinuity in the implementation of this program. The program

was rolled out in a randomized manner across some clusters, but not for the country as a

whole (see Björkman-Nyqvist et al., 2018 for a randomized impact evaluation). Nonethe-

less, we define village-level coverage under BRAC’s health program by a dummy variable

that takes the value of 1 if at least one household in the village reports the availability or

utilization of the services of a BRAC health promoter, and test if this program could have

affected our results in the following ways. First, while there was no mandated discontinuity

in the health program, the actual implementation of the program might have been discon-

20In order to compute average income level near a BRAC branch we use households in a 20 kilometer
radius.
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tinuous at the cutoff of 6 km. Using the same RD design we find that access to BRAC’s

health program was not discontinuous at the threshold (β= 0.034, s.e.= 0.049).21 Second,

we find that controlling for access to the health program does not change the estimated ef-

fect on household malaria prevalence (β=-0.096, s.e.=0.015). Third, while BRAC’s health

program was not discontinuous at the 6 km cutoff, there might be interaction effects be-

tween the health program and the agricultural program in the sense that the agricultural

intervention had a differential impact on malaria in the presence of the health program. In

order to check for this we included an interaction of the indicator variable for the health

program and T j in Equation 4. We find the coefficient on the interaction term to be statisti-

cally insignificant indicating that access to the health program did not differentially affect

malaria prevalence (β= 0.047, s.e.= 0.045). Admittedly, while these checks suggests that

the health program may not be driving the effects on malaria, access to the program may

have varied in unobserved dimensions (such as intensity of activities) and we can not rule

it out with certainty.

A related concern could be that the treatment villages had better access to bednets through

various government programs. We can rule this out in the case of two key programs that

were in place during the period of this study. The NMCP has long pursued free distribution

of bednets to pregnant women during ANC visits. However, as we discussed in Section 5.1,

we find that women in treatment villages who were pregnant at the time of the survey or

gave birth in the year preceding the survey were less likely to have visited an ANC. Further,

in order to boost bednet coverage in the country the NMCP also started a mass LLIN dis-

tribution campaign in 2010, beginning with households with a pregnant woman or child

under five in 13 districts in the Central region of Uganda (Wanzira et al., 2014). Target-

ing was imperfect as substantial number of ineligible households received the campaign

bednets as well. We drop all households residing in the overlapping districts in the Central

region and find that the effects on household level malaria prevalence continue to hold (β=
-0.08, s.e.= 0.013).

Overall, while we do not find the supply of healthcare to be discontinuous at the threshold,

it is possible that the demand for healthcare increased. For example, by increasing the eco-

nomic value of labor, the agricultural program could have changed household preferences

such that households become more willing to invest in preventive healthcare (irrespective

of a relaxation of the household budget constraint). Households might have been more

willing to purchase bednets, anti-malarial drugs, or seek medical advice that reduced the

frequency and/or the length of malaria episodes. While we do not have information on the

21Figure A2d in the online Appendix shows this graphically. Alternatively, we could define village-level
coverage as the proportion of households in a village that report access to BRAC’s health program. We do not
find this measure to differ at the threshold as well (β=0.006, s.e.=0.021).
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demand for preventive healthcare, we find that demand for curative care increased - con-

ditional of being sick, the probability of visiting a doctor is higher in the treatment villages

(β=0.026, s.e.=0.01).

Lack of information on malaria transmission and its effects may dampen investment in

malaria prevention. The agricultural extension program studied here did not include any

health component. Still, it is possible that by facilitating more social interaction, the agri-

cultural extension program resulted in the exchange of some health related information as

well. The BRAC questionnaire asked respondents if they were related to or friends with

other surveyed respondents in the village, providing partial information on the social net-

work of the household. On restricting our sample to households with at least a friend or

a relative covered in the survey, we find that the likelihood of turning to their social net-

work for health related information does not change significantly at the cutoff (β= -0.063,

s.e. = 0.051). Note that this only partially rules out the information channel as playing

a role in the reduction of malaria. For example, it is possible that the respondents sought

health related information from BRAC’s extension services agents (who are typically more

educated) or parts of their social network that were not surveyed.

The extension services program, by altering agricultural practices, could have also directly

affected the prevalence of malaria in two crucial ways - the use of irrigation and pesticides.

It is possible that the use of agricultural inputs such as irrigation, particularly in the case

of rice production, may be conducive for malaria vectors (Ghebreyesus et al., 1999).22

Majority of cultivation in Uganda is rain-fed, with only 2.51% of farmers reporting using

irrigation in our sample. Nonetheless, an increase in irrigation can result in the occurrence

of small stagnant water bodies and an increase in the moisture content of soil. However, Pan

et al. (2018) find that the agricultural extension program increased the probability that a

household used irrigation, leading us to believe that this channel is not driving our results.23

Similarly, an increase in the use of pesticides could result in the decline of malaria vectors

and the prevalence of malaria, but Pan et al. (2018) do not find a significant increase in

the use of pesticides.

Finally, it is worth noting that the reduction in malaria is associated with an agricultural

extension program that specifically targeted female farmers. Some of the existing literature

finds that women are more likely to invest in health than men (see Strauss et al., 2000).

22However, recent medical literature from Africa suggests that even though irrigation increases the density
of malaria vectors, this may not necessarily translate into a higher prevalence of malaria - resulting in what
is termed as the “paddies paradox.” A possible explanation is that the mosquito An. arabiensis Patton, with
lesser malaria carrying capacity, multiplies faster in rice fields and may displace An. Gambiae Giles, the most
effective malaria vector (Ijumba and Lindsay, 2001).

23Furthermore, observations from the field do not indicate construction of new dams or other major irri-
gation systems. Unfortunately, we do not observe the method of irrigation in the data.
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Then the increase in the household ownership of bednets may not only be due to an increase

in income but also due to a resulting increase in the bargaining power of women. We use

the proportion of household consumption expenditure spent on tobacco and alcohol as a

proxy for the bargaining power of women (Hoddinott and Haddad, 1995) to check if the

program increased the bargaining power of women. Using the same RD design we do not

find a reduction in the share of household expenditure on these items at the cutoff point

(β= 0.001, s.e. = 0.002). Nonetheless, while this result indicates that an increase in the

bargaining power of women may not be primary force driving the reduction in malaria, we

do not rule out the possibility that it might have played a role in it.

5.3 Other outcomes

In order to further emphasize the impact of the intervention on the disease environment and

welfare, we report effects on related health outcomes and the education of children.

First from the BRAC survey we also have information on whether an individual had been

sick in the 30 days preceding the survey. As shown in Panel A of Table 9, we find that

access to the program did not have any effect on the likelihood of being sick for any of

the three age groups. While this outcome variable is more general than malaria, the lack

of effects here are somewhat puzzling, but it is possible that the month of survey plays a

role. Individuals are more vulnerable to sickness during the rainy season (diseases such as

malaria, dengue, diarrhea, etc. are more common), and it is possible that the intervention

had an effect during this time rather than during the dry season. The survey was conducted

over the months of July-December 2011. As the rainy seasons in Uganda are March-May

and September-December, the recall period for the first half of the survey (survey months

July-September) overlapped with the dry season, and during the rest of the survey (survey

months October-December), it overlapped with the rainy season. We investigate this pos-

sibility by splitting the sample by whether the recall period for the household overlapped

with the rainy season or not in Panels B and C of Table 9. In Panel B we find that the pro-

gram had no effect on illness during the dry season. However, results in Panel C show that

the likelihood of illness reduced significantly during the rainy season for children aged 0-5

years and adults aged 20-60 years. These results further substantiate the finding that the

intervention positively affected health.

Second, we also checked if the household made other related health investments. Footwear

can be considered a health-related product as by limiting skin contact with fecal matter

it reduces the chances of intestinal worm infections (hookworm, roundworm). The first

column of Table 10, reports that the probability that every household member owns at least
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one pair of shoes is significantly higher for households residing below the cutoff. Once again

this is a striking result given that we do not find households to differ on this measure when

using the pre-treatment UNHS 2005-06 data (column 5, Panel B in Table 2).

Lastly, there is now a robust empirical literature that causally links children’s health to ed-

ucational outcomes. As discussed earlier in Section 4.3, studies have found malaria eradi-

cation programs in the 20th century to have improved literacy, educational attainment and

cognition in the long-run (Lucas, 2010; Venkataramani, 2012; Barreca, 2010). In a similar

vein, Miguel and Kremer (2004) find that a school-based deworming program in Kenya

increased school attendance. Results in columns 2 and 3 of Table 10 show that the effects

of the agricultural extension program correspond to the existing literature. We restrict the

sample to children aged 7-13 years old as children normally start primary school at age 6,

and 7 years of primary education is compulsory. In column 2 we find that children in eligi-

ble villages are 4.3 percentage points more likely to be attending school. Further, in order

to capture educational attainment we use an indicator for age-grade distortion, where the

outcome variable takes the value 1 if the child is overage relative to her grade.24 The result

in column 3 shows that in villages with access to the program, children are also less likely

to be overage for their grade. Taken together, these results suggest that the intervention

had a meaningful effect on household welfare.

6 Conclusion

Despite a recent declining trend, malaria continues to be a significant cause of global mor-

bidity and mortality. In this paper, we find that access to an agricultural intervention pro-

gram in Uganda led to substantial reductions in the prevalence of malaria. The effects

were substantial for the most vulnerable groups - children under the age of 5 and pregnant

women. As exposure to health shocks in early life can translate into considerable economic

losses over time, our results imply that the agricultural extension services program could

have substantial long-term benefits that are not accounted for in standard cost-benefit anal-

yses.

One of the explanations, consistent with our data, seems to be that the reduction in malaria

was driven by an increase in incomes. Overall, we estimate that agricultural extension pro-

gram increased household income by 27.5% while it reduced household malaria prevalence

by 8.9 percentage points, thereby highlighting the role of financial constraints in limiting in-

24More precisely, we calculate age-grade distortion as AGD=grade-(age-7). The overage indicator takes
the value of 1 if AGD<=0. As children usually start school at the age of 6 years, if they are older than 7 after
having completed the first year of primary school then they are over-age for their grade level.
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vestments in malaria control. Moreover, the finding that an easing of the income constraint

led to greater bednet use and reduction in malaria among children indicates that the inter-

play between the lack of income and preferences for intra-household allocation of health

resources may have severe implications for the most vulnerable household members. Fur-

ther research into the preferences for intra-household allocation of health resources other

than bednets, such as nutritional intake and preventive medicine consumption could inform

policies that seek to promote health status of the most vulnerable members.

From a policy perspective, while there is consensus on the need for subsidization to boost

uptake of bednets, there is debate on the amount of subsidization as governments typi-

cally face a trade-off between the cost of subsidization and the possibility of excluding the

poorest households that lack the cash to even pay reduced prices. Our results indicate that

alleviating the income constraint of households through other policy instruments can go

some way in improving health outcomes and easing this trade-off.

Finally, while the results are specific to the ecology of the area under study, they do indicate

that higher incomes associated with increased agricultural productivity can perhaps im-

prove health outcomes in other similar contexts as well. The relationship between agricul-

ture and health is complex, but continued assessment of the health impacts of agricultural

interventions can further our understanding. To that end, we also recommend including

questions regarding health and preventive health investments in agricultural survey instru-

ments.
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Figures and Tables

Figure 1: Household density and program eligibility
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Notes: The figure presents the relationship between the number of households and the
distance of the village from the eligibility threshold. The scatter dots represent means
of bins with a bandwidth of 0.1 km. The solid lines are local polynomial fits, estimated
separately on each side of the cutoff.
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Figure 2: Discontinuity in program activities 6 months preceding the survey
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Notes: The figure presents the relationship between access to the agricultural program
in the 6 months preceding the BRAC survey and the distance of the village from the
eligibility threshold. The scatter dots represent means of bins with a bandwidth of 0.1
km. The solid lines are local polynomial fits, estimated separately on each side of the
cutoff.
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Figure 3: Impact of program eligibility on household malaria prevalence
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Notes: The figure presents the relationship between household malaria prevalence in the
6 months preceding the BRAC survey and the distance of the village from the eligibility
threshold. The scatter dots represent means of bins with a bandwidth of 0.1 km. The
solid lines are local polynomial fits, estimated separately on each side of the cutoff. The
dashed lines represent 95% confidence intervals.
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Figure 4: Effects on household malaria prevalence, by varying bandwidths
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Notes: The figure presents the intent-to-treat (ITT) effects for bandwidths at every in-
crement of 0.2 km from 0.6 km to 4 km. The dashed lines represent 95% confidence
intervals for these bandwidths.
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Figure 5: Impact of program eligibility on agricultural value per capita and bednet owner-
ship per capita

(a) Agricultural value per capita
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(b) Bednet ownership
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Notes: The figure presents the relationship between the distance of the village from the eligibility threshold
and (a) household’s value of agricultural production per capita, and (b) household’s bednet ownership per
capita. The scatter dots represent means of bins with a bandwidth of 0.1 km. The solid lines are local
polynomial fits, estimated separately on each side of the cutoff. The dashed lines represent 95% confidence
intervals.
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Table 1: Summary statistics

Variable Mean SD

Household level
HH head age 43.72 14.1
HH head literacy 0.732 0.443
HH size 6.16 2.84
Committee Member 0.330 0.470
Health Program 0.408 0.491
Household level malaria prevalence 0.287 0.320
Bednets owned per capita 0.400 0.462

Individual level malaria prevalence
Ages 0-5 0.503 0.500
Ages 6-19 0.354 0.478
Ages 20-60 0.295 0.456
Males 0.336 0.472
Females 0.370 0.483
Pregnant 0.399 0.490
All 0.354 0.478

Number of observations
Number of villages 417
Number of households 7206
Number of individuals 36517

Notes: Household level malaria prevalence is the fraction of household members who

reported being infected by malaria in the previous 6 months. Committee Member is

a dummy variable that takes the value 1 if at least one household member belongs

to a village committee, and 0 otherwise. Health Program is a dummy variable that

takes the value of 1 if at least one household in the village reports the availability or

utilization of the services of the BRAC health program. The sample is restricted to

villages within 10 km. of a BRAC branch office.
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Table 2: Discontinuity in controls

Panel A: Pre-intervention discontinuity using BRAC survey data

HH age HH literacy Committee Member
(1) (2) (3)

Below threshold 0.152 -0.002 0.012
(0.392) (0.018) (0.03)

Control mean 43.86 0.70 0.34
Number of households 3171 3163 3199
Number of villages 173 173 173

Panel B: Pre-intervention discontinuity using UNHS (2005-06)

Log agri-
cultural

value per
capita

HH level
malaria

prevalence

HH owns at
least one
bednet=1

Log value of
bednets per

capita

Everyone
owns at least

1 pair of
shoes =1

(1) (2) (3) (4) (5)

Below threshold -0.061 0.045 -0.041 -0.159 -0.032
(0.209) (0.031) (0.071) (0.549) (0.131)

Control mean 10.79 0.19 0.24 1.70 0.51
Number of households 564 698 697 697 695
Number of villages 71 71 71 71 71

Notes: The table reports non-parametric reduced form estimates using the bandwidth of 2 km. In Panel B, the reference

period for household level malaria prevalence in the UNHS (2005-06) is 30 days preceding the survey. Standard errors

calculated clustered at the village level are reported in parentheses. * significant at 10%,** significant at 5%,*** signifi-

cant at 1%.
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Table 3: Effect on malaria prevalence at household level

Malaria prevalence

Bandwidth=2 Bandwidth=1.5 Bandwidth=3

(1) (2) (3) (4) (5) (6)

Eligible -0.089*** -0.099*** -0.105*** -0.117*** -0.089*** -0.099***
(0.017) (0.016) (0.02) (0.018) (0.015) (0.014)

Covariates No Yes No Yes No Yes
Control mean 0.302 0.305 0.292 0.295 0.286 0.288
Number of households 3240 3085 2489 2363 4475 4272
Number of villages 173 173 131 131 245 245

Notes: This table shows the effect of eligibility for the agricultural extension program on household level malaria preva-

lence using the non-parametric method described in the text. Controls included are age and literacy of the household

head, presence of a committee member in the household, gender of respondent, month of survey, and household dis-

tance. Standard errors calculated clustered at the village level are reported in parentheses. * significant at 10%,**

significant at 5%,*** significant at 1%.
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Table 4: Effects on malaria: Individual level

By age groups By Gender
Pregnant

Ages 0-5 Ages 6-19 Ages 20-60 Males Females
(1) (2) (3) (4) (5) (6)

Panel A: Without covariates
Eligible -0.112*** -0.058** -0.062*** -0.084*** -0.074** -0.225***

(0.041) (0.024) (0.023) (0.024) (0.033) (0.067)
Control mean 0.501 0.381 0.319 0.362 0.387 0.396
Observations 2319 7090 6329 7810 8276 366
Number of villages 171 172 173 172 173 124

Panel B: With covariates
Eligible -0.129*** -0.067* -0.074** -0.093*** -0.083*** -0.191***

(0.043) (0.037) (0.031) (0.024) (0.032) (0.072)
Control mean 0.502 0.380 0.316 0.360 0.387 0.398
Observations 2224 6782 6100 7544 8017 356
Number of villages 171 172 173 172 173 123

Notes: The table reports non-parametric estimates of the impact of program eligibility using the bandwidth of 2 km.

Controls included are age and literacy of the household head, presence of a committee member in the household,

gender of respondent, month of survey, and household distance. Standard errors calculated clustered at the village

level are reported in parentheses. * significant at 10%,** significant at 5%,*** significant at 1%.
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Table 5: Effects on household agricultural income and bednet ownership

Log agricultural value per capita Bednet ownership per capita

(1) (2) (3) (4)

Eligible 0.276*** 0.29*** 0.079*** 0.052*
(0.097) (0.10) (0.029) (0.030)

Covariates No Yes No Yes
Control mean 10.65 10.66 0.363 0.364
Number of households 2775 2655 3186 3051
Number of villages 173 173 173 173

Notes: The table reports non-parametric estimates of the impact of program eligibility using the bandwidth of

2 km. Controls included are age and literacy of the household head, presence of a committee member in the

household, gender of respondent, month of survey, and household distance. Standard errors calculated clus-

tered at the village level are reported in parentheses. * significant at 10%,** significant at 5%,*** significant

at 1%.
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Table 6: Effects on bednet usage

By age groups By Gender
Pregnant

Ages 0-5 Ages 6-19 Ages 20-60 Males Females
(1) (2) (3) (4) (5) (6)

Panel A: Without covariates
Eligible 0.144*** 0.097*** 0.032 0.070** 0.059** -0.027

(0.032) (0.034) (0.03) (0.033) (0.03) (0.082)
Control mean 0.595 0.444 0.549 0.505 0.517 0.631
Observations 2333 7127 6366 7857 8319 366
Number of villages 171 172 173 172 173 124

Panel B: With covariates
Eligible 0.129*** 0.083** 0.001 0.054* 0.045 -0.058

(0.029) (0.033) (0.03) (0.031) (0.029) (0.092)
Control mean 0.597 0.444 0.548 0.503 0.514 0.625
Observations 2236 6815 6136 7588 8056 356
Number of villages 171 172 173 172 173 123

Notes: The table reports non-parametric estimates of the impact of program eligibility using the bandwidth of

2 km. Controls included are age and literacy of the household head, presence of a committee member in the

household, gender of respondent, month of survey, and household distance. Standard errors calculated clus-

tered at the village level are reported in parentheses. * significant at 10%,** significant at 5%,*** significant

at 1%.
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Table 7: Effects on malaria: Intra-household spillovers on pregnant women

No child aged ≤ 5 in HH At least 1 Child aged ≤ 5 in HH

(1) (2) (3) (4)

Eligible 0.063 0.117 -0.393*** -0.325***
(0.116) (0.111) (0.098) (0.099)

Covariates No Yes No Yes
Control Mean 0.293 0.278 0.449 0.458
Observations 135 131 231 225
Number of villages 72 70 110 109

Notes: The table reports non-parametric estimates of the impact of program eligibility on malaria

incidence among pregnant women using the bandwidth of 2 km. Controls included are age and lit-

eracy of the household head, presence of a committee member in the household, gender of respon-

dent, month of survey, and household distance. Standard errors calculated clustered at the village

level are reported in parentheses. * significant at 10%,** significant at 5%,*** significant at 1%.
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Table 8: Effects on malaria and bednets: differences by pre-treatment income level

HH level malaria prevalence Bednet ownership per capita

Poorer branches Richer branches Poorer branches Richer branches
(1) (2) (3) (4)

Eligible -0.152*** -0.012 0.163*** 0.002
(0.012) (0.03) (0.021) (0.047)

Control Mean 0.407 0.193 0.358 0.369
Number of households 1501 1739 1479 1707
Number of villages 72 101 72 101

Notes: The table reports non-parametric estimates of the impact of program eligibility on household level malaria preva-

lence and bednet ownership using the bandwidth of 2 km. Branches are classified as rich/poor based on value of agri-

cultural production per capita using the UNHS 2005-06 data. Standard errors calculated clustered at the village level

are reported in parentheses. * significant at 10%,** significant at 5%,*** significant at 1%.
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Table 9: Effects on the probability of being sick during the last 30 days

Ages 0-5 Ages 6-19 Ages 20-60
(1) (2) (3)

Panel A: Pooled sample
Eligible 0.011 0.016 -0.001

(0.043) (0.021) (0.017)
Control mean 0.265 0.155 0.145
Observations 2321 7165 6416
Number of villages 171 172 173

Panel B: Recall period overlaps with dry season
Eligible -0.019 -0.018 0.005

(0.061) (0.027) (0.022)
Control mean 0.279 0.173 0.153
Observations 1634 5212 4588
Number of villages 129 136 137

Panel C: Recall period overlaps with rainy season
Eligible -0.089* -0.007 -0.067***

(0.046) (0.025) (0.02)
Control mean 0.236 0.104 0.124
Observations 680 1927 1805
Number of villages 59 63 64

Notes: The table reports non-parametric estimates of the impact of program eligibility

on the likelihood of being sick during the last 30 days using the bandwidth of 2 km.

Panel B includes survey months July-September and Panel C includes survey months

October-December. Standard errors calculated clustered at the village level are reported

in parentheses. * significant at 10%,** significant at 5%,*** significant at 1%.
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Table 10: Effects on other related outcomes

Everyone
owns at least

1 pair of
shoes in HH

Children aged 7-13

Attending
school

Overage

(1) (2) (3)

Eligible 0.139*** 0.043*** -0.118***
(0.011) (0.008) (0.024)

Control mean 0.768 0.934 0.475
Observations 3187 3797 3650
Number of villages 173 172 172

Notes: The table reports non-parametric estimates of the impact of program eligibility using

the bandwidth of 2 km. Standard errors calculated clustered at the village level are reported

in parentheses. * significant at 10%,** significant at 5%,*** significant at 1%.
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Online appendix: Not for publication

Figure A1: Survey area

Notes: The figure represents a map of Uganda with the surveyed counties highlighted
in red.
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Table A1: Program activity in last 6 months

Bandwidth=2 Bandwidth=1.5 Bandwidth=3

(1) (2) (3) (4) (5) (6)

Eligible 0.427*** 0.423*** 0.386*** 0.394*** 0.426*** 0.423***
(0.038) (0.042) (0.036) (0.04) (0.036) (0.04)

Covariates No Yes No Yes No Yes
Control mean 0.242 0.237 0.242 0.239 0.241 0.238
Number of households 3240 3085 2489 2363 4475 4272
Number of villages 173 173 131 131 245 245

Notes: This table reports non-parametric estimates of the impact of program eligibility on agriculture extension

program activities in the 6 months preceding the survey. Controls included are age and literacy of the household

head, presence of a committee member in the household, gender of respondent, month of survey, and household

distance. Standard errors calculated clustered at the village level are reported in parentheses. * significant at

10%,** significant at 5%,*** significant at 1%.
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Table A3: Robustness check: Effects on malaria at individual level using alternative band-
widths

By age groups By Gender
Pregnant

Ages 0-5 Ages 6-19 Ages 20-60 Males Females
(1) (2) (3) (4) (5) (6)

Panel A: Bandwidth=1.5
Eligible -0.137*** -0.083*** -0.088*** -0.106*** -0.102*** -0.273***

(0.047) (0.027) (0.027) (0.027) (0.036) (0.075)
Control mean 0.482 0.364 0.309 0.343 0.376 0.390
Observations 1730 5391 4899 5934 6318 277
Number of villages 129 130 131 130 131 95

Panel B: Bandwidth=3
Eligible -0.108*** -0.075*** -0.075*** -0.093*** -0.081*** -0.177***

(0.034) (0.023) (0.02) (0.021) (0.028) (0.059)
Control mean 0.489 0.355 0.293 0.334 0.364 0.363
Observations 3220 9953 8777 10912 11578 490
Number of villages 242 244 245 244 245 166

Notes: The table reports non-parametric estimates of the impact of program eligibility using the bandwidths of 1.5

km and 3 km. Standard errors clustered at the village level are reported in parentheses. * significant at 10%,** sig-

nificant at 5%,*** significant at 1%.
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Table A4: Effects on malaria by age and gender

Ages 0-5 Ages 6-19 Ages 20-60

Males Females Males Females Males Females
(1) (2) (3) (4) (5) (6)

Eligible -0.064 -0.183** -0.077 -0.032 -0.072 -0.059
(0.103) (0.087) (0.071) (0.074) (0.069) (0.061)

Control mean 0.51 0.50 0.38 0.38 0.28 0.34
Observations 1107 1179 3487 3483 2942 3292
Number of villages 169 167 171 172 172 172
p-value: β(males)=β(females) 0.377 0.659 0.141

Notes: The table reports nonparametric estimates of the impact of program eligibility using a bandwidth of

2km. Standard errors clustered at the village level are reported in parentheses. * significant at 10%,** signif-

icant at 5%,*** significant at 1%.
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Table A5: Robustness check: Effect on malaria prevalence at household level using re-
stricted sample

Bandwidth=2 Bandwidth=1.5 Bandwidth=3
(1) (2) (3)

Eligible -0.093*** -0.112*** -0.093***
(0.017) (0.02) (0.015)

Control mean 0.305 0.295 0.288
Number of households 3085 2363 4272
Number of villages 173 131 245

Notes: This table shows the effect of eligibility for the agricultural extension program using

the non-parametric method described in the text. The sample is restricted to households with

information on all controls used in Table 3. Standard errors clustered at the village level are

reported in parentheses. * significant at 10%,** significant at 5%,*** significant at 1%.
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Table A6: Robustness check: Effects on malaria at individual level using restricted sample

By age groups By Gender
Pregnant

Ages 0-5 Ages 6-19 Ages 20-60 Males Females
(1) (2) (3) (4) (5) (6)

Eligible -0.118*** -0.057 -0.069** -0.087*** -0.074** -0.223***
(0.045) (0.037) (0.032) (0.025) (0.033) (0.069)

Control mean 0.502 0.380 0.316 0.360 0.387 0.398
Observations 2224 6782 6100 7544 8017 356
Number of villages 171 172 173 172 173 123

Notes: The table reports non-parametric estimates of the impact of program eligibility using the bandwidth of 2 km.

he sample is restricted to households with information on all controls used in Table 4. Standard errors clustered at

the village level are reported in parentheses. * significant at 10%,** significant at 5%,*** significant at 1%.
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Table A7: Robustness check: Effects on household agricultural income and bednet owner-
ship using restricted sample

Log agricultural
value per capita

Bednet ownership
per capita

(1) (2)

Eligible 0.234*** 0.07***
(0.107) (0.03)

Control mean 10.66 0.364
Number of households 2655 3051
Number of villages 173 173

Notes: The table reports non-parametric estimates of the impact of program el-

igibility using the bandwidth of 2 km. The sample is restricted to households

with information on all controls used in Table 5. Standard errors clustered at the

village level are reported in parentheses. * significant at 10%,** significant at

5%,*** significant at 1%.
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Table A8: Robustness check: Effects on betnet usage at individual level using restricted
sample

By age groups By Gender
Pregnant

Ages 0-5 Ages 6-19 Ages 20-60 Males Females
(1) (2) (3) (4) (5) (6)

Eligible 0.149*** 0.098*** 0.023 0.07** 0.059* -0.062
(0.036) (0.035) (0.03) (0.032) (0.031) (0.093)

Control mean 0.597 0.444 0.548 0.503 0.514 0.625
Observations 2236 6815 6136 7588 8056 356
Number of villages 171 172 173 172 173 123

Notes: The table reports non-parametric estimates of the impact of program eligibility using the bandwidth

of 2 km. The sample is restricted to households with information on all controls used in Table 6. Standard

errors clustered at the village level are reported in parentheses. * significant at 10%,** significant at 5%,***

significant at 1%.
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Table A9: Robustness check: Effects on malaria for pregnant women using restricted sample

No child aged ≤ 5 in HH At least 1 Child aged ≤ 5 in HH
(1) (2)

Eligible 0.03 -0.351***
(0.117) (0.106)

Control mean 0.278 0.458
Observations 131 225
Number of villages 70 109

Notes: The table reports non-parametric estimates of the impact of program eligibility on malaria

prevalence among pregnant women using the bandwidth of 2 km. The sample is restricted to house-

holds with information on all controls used in Table 7. Standard errors clustered at the village level

are reported in parentheses. * significant at 10%,** significant at 5%,*** significant at 1%.
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